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Abstract
The advent of Ultra-Low-Latency storage devices has narrowed the

performance gap between storage and CPU in computing platforms,

facilitating synchronous I/O adoption. Yet, this approach introduces

substantial busy waiting time and underutilizes computing units.

To address this, we propose a light-weighted Idle-Time-Stealing

(ITS) design. This involves a self-improving thread conducting pre-

fetching for high-priority processes during synchronous I/O, and an

I/O-waiting process continuing subsequent instruction executions

when justifiable. Another thread, the self-sacrificing thread, proac-

tively switches low-priority process I/O requests from synchronous

to asynchronous mode, prioritizing high-priority executions. Ex-

perimental results demonstrate the effectiveness of our ITS design

in reducing CPU idle time.
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1 Introduction
With the rise of new storage media like flash memory or 3D-XPoint,

the performance disparity between storage devices and CPUs on

many platforms is rapidly diminishing [17, 19]. Researchers are

questioning the continued appropriateness of exclusively utilizing

asynchronous I/Os, as the context-switch overheads may no longer

outweigh the benefits [4, 15, 18]. Since no productive work takes

place during CPU busy waiting in synchronous I/Os, it is essential

to reevaluate how we utilize this waiting time to optimize the effi-

ciency of process execution in our systems. These considerations

hold particular significance for heavily loaded data-intensive appli-

cations, such as graphs, high-performance computing tasks, and

Large Language Models [6].

Generally, CPUs synchronously access fast I/O devices (e.g.,

DRAM) without the intervention of the Operating System (OS)

so as to avoid software overhead. On the other hand, CPUs asyn-

chronously access slow I/O devices (e.g., Solid-State-Drives (SSDs))

with more helps from the OS (e.g., context switching, file system,
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and page cache) for the optimizations depending on different I/O

paths. When the CPU accesses the data located in the slow I/O

devices, the OS is invoked for processing one of the two I/O paths:

process I/O or file I/O
1
. This work focuses on the “process I/O (also

called swap I/O)”, caused when the CPU loads/stores data (e.g.,

Heap data) in the swap area. To handle process I/Os, the OS marks

the Direct Memory Access (DMA) to move the data to the swap

cache in the DRAM, and then performs a context switch to avoid

the CPU waiting for the slow I/O.

In recent years, research from Google [1] and industry leaders

such as Intel and IBM [15, 20] reveals that the storage response

time of certain Ultra-Low-Latency (ULL) I/O devices, like Intel
®

Optane
TM

SSDs and Samsung Z-NAND SSDs [9, 21], has reached

microseconds-levels (𝜇𝑠), often outpacing the overhead of context

switches that can exceed 5-10𝜇𝑠 in general-purpose systems [15, 16,

20]. Faced with this shift, asynchronous I/O mode proves ineffective

for handling I/O requests with response times faster than a context

switch. Instead, Intel Corporation and IBM Corporation [15, 20]

advocate synchronous I/O mode, involving CPU busy waiting for

swift I/O completion. While this speeds up overall performance,

it results in wasted computation resources that cannot contribute

to execution progress during CPU busy waiting. This resource

inefficiency becomes more pronounced, particularly when dealing

with larger I/O sizes like huge page management [7, 13, 18]. The

impact is heightened for high-priority processes with longer time

slices from the current process scheduler. Hence, optimizing the

use of busy waiting time is crucial, especially for high-priority

processes.

Distinct from past works, we proposed a light-weighted Idle-

Time-Stealing (ITS) design to utilize the otherwise-wasted I/O busy

time. We favor the executions of high-priority processes (called

self-improving processes for the rest of this paper) by executing

their I/O requests in synchronous mode to shorten their execution

time. We propose to use a kernel thread (called a self-improving

thread) for each self-improving process to initiate needed mem-

ory prefetching actions by utilizing the synchronous I/O waiting

time. Suppose there is any time left during the synchronous I/O

waiting time. In that case, the self-improving thread might even

pre-execute subsequent instructions following the I/O request un-

der our proposed pre-execute policy to proactively shorten the

process execution time, where the pre-execute policy must justify

the trade-off in pre-execution. We propose to execute the I/O re-

quests of low-priority processes (called self-sacrificing processes)

in the asynchronous mode under our proposed priority-aware I/O

mode selection policy so as to give way to high-priority process

executions. Even though low-priority processes seem to be disfa-

vored in executions over CPU and I/O devices, they might receive

1
Each file I/O is triggered when the CPU runs read/write system calls, and it involves

filesystem and page cache managements.
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much more concentrated attention when they can execute (after

high-priority processes rapidly finish their executions) and might

even have an earlier finish time in many cases.

The evaluation results show that our ITS design could effectively

reduce the CPU idle time by around 61%∼66% and 17%∼43%, than
those with the asynchronous I/O mode and the synchronous I/O

mode, respectively. Meanwhile, the average finish time of high-

priority processes can be reduced by 65%∼75% and 11%∼33% than

those with the asynchronous I/O mode and the synchronous I/O

mode, respectively.

2 Background, Observation, and Objective
2.1 Background
2.1.1 Context Switch. To provide the illusion of large memory

space at a lower price, virtual memory management enables extend-

ing memory space with storage devices. Due to the huge latency

gap between memory and storage devices, the CPU will stall sig-

nificantly while accessing storage devices. Long CPU stalling leads

to low CPU utilization and further degrades system performance.

To hide long CPU stalling, the OS triggers a context switch [14]

to yield the idle CPU to other processes and let the I/O request

be served asynchronously without blocking CPU resources. The

design objective of the context switch is to back up process contexts

before switching the process, which is waiting for the I/O comple-

tion and then restoring the other ready-to-run process. Specifically,

process contexts
2
stored in the CPU registers will be copied to the

main memory, and the process contexts related to the switched-in

process will be moved from the main memory to the CPU reg-

isters. Due to the movements of process context between main

memory and CPU registers, the time spent on a conducting context

switch is around several microseconds, e.g., longer than 5–10 𝜇𝑠

on a general-purpose machine as reported by several researchers,

such as from Intel and IBM [15, 16, 18, 20]. Frequently perform-

ing context switching may cause frequent CPU cache misses and

Translation Look-aside Buffer (TLB) shootdown.

2.1.2 Killer Microsecond. The context switching overhead be-

comes the performance bottleneck when the CPU accesses the ULL

devices [9], whose access latency is around a few microseconds.

Even worse, this microsecond-level CPU stalling cannot be effec-

tively hidden by using CPU optimizations. Specifically, researchers

from Google [1] point out that simultaneous multi-threading (e.g.,

Intel Hyper-Threading) and other techniques for nanosecond time

scales (e.g., superscalar out-of-order execution and branch pre-

diction) do not scale well to deal with microsecond requests. The

reason is that designers lack enough hardware-managed thread con-

texts or instruction-level parallelism to hide the microsecond-level

CPU stalling. Due to the difficulty in tackling the microsecond-level

CPU stalling, it is also called the “killer microsecond” [1, 15]. To

deal with the killer microsecond, the most recent solution is to

wait directly for the fast access latency provided by the ULL de-

vices without performing the context switch. As a result, instead of
adopting the asynchronous I/O mode, Intel and IBM advocate to adopt
the synchronous I/O mode by forcing the CPU busy waiting during
accessing ULL devices [15, 20].

2.2 Observation and Objective
Although adopting the synchronous I/O mode to wait for the I/O

completion of the ULL devices can eliminate the performance bot-

tleneck caused by conducting a context switch, the time CPU spent

on busy waiting (i.e., CPU idle time) cannot be utilized to proceed

2
Process contexts are the process states stored in the CPU registers including stack

pointer, instruction pointer, kernel stack, page table directory, program counter, and

so on.

with process progress. We conduct an experiment to show the CPU

idle time while running multiple processes. We select five repre-

sentative processes from several popular benchmark suites, that

is, Wrf, Blender, page rank, random walk algorithm, and also the

single shortest path algorithm. More details for the datasets and

simulation configuration can be found in Section 4.1. According

to our evaluation results, more than 22% of CPU idle time is spent

waiting for the completion of the synchronous I/O, where all results

are normalized to the time spent on running 2 processes. Please

note that the CPU idle time is the aggregated time of the CPU busy

waiting for the response of memory and storage devices during

the cache misses and page faults, respectively. Moreover, the long

idle time issue becomes more serious when more processes are

run simultaneously. The reason is that all processes share and con-

tend the memory resources; thus, this phenomenon will frequently

cause a page fault which makes the CPU become idle. With this
observation in mind, this work aims to propose a new I/O design to
steal and utilize the otherwise-wasted CPU idle time so as to further
improve the system performance.

3 Idle-Time-Stealing (ITS) Design
3.1 Design Overview & Concept
In Figure 1, the interaction among our Idle-Time-Stealing (ITS)

design, OS modules (e.g., page fault handler), and hardware compo-

nents is depicted. The Memory Management Unit (MMU) plays a

key role in translating virtual memory addresses to corresponding

physical addresses and checking page status through page table

entry lookups. When a user process lacks permission to access a

page or the required page is absent from memory, the MMU trig-

gers an exception known as a page fault ( 1 ). Subsequently, the
CPU transitions from user mode to kernel mode to execute the

page fault handler ( 2 ). The page fault handler examines page table

information, such as page table entries, linked to the fault address

and performs fault area checking to determine whether it is a minor

or major fault
3
( 3 ). In the case of a major page fault, the handler

invokes the page swapping function to instruct the DMA controller

to transfer the required page’s physical address from ULL devices to

DRAM ( 4 ). It is noteworthy that this work concentrates solely on

addressing major page faults due to their more substantial impact

on execution time.

Our ITS design (colored in Figure 1) initiates new kernel threads

(called ITS threads) to run their corresponding kernel functions by

utilizing the otherwise-wasted CPU resources. To avoid reinventing

wheels, we reuse some functions provided by the Linux kernel to

realize our ITS design. In Section 3.2, our priority-aware thread

selection policy first checks the priority information of the user

process by querying the OS scheduler. Then, it initiates the self-

sacrificing kernel thread if the user process is a low-priority process.

Otherwise, the policy initiates the self-improving kernel thread

( 5 ). The design concept of the self-sacrificing kernel thread in

Section 3.3 is to execute any I/O request issued by a low-priority

process in the asynchronous mode so as to give way to high-priority

process executions.

On the other hand, during the synchronous I/O waiting time of a

high-priority process, its self-improving kernel thread (introduced

in Section 3.4) will run the page-prefetch policy in Section 3.4.1 to

initiate memory prefetching actions over DMA by considering ac-

cess locality explored from the page table so as to shorten its future

execution time. Suppose there is any time left during the synchro-

nous I/O waiting time. In that case, the self-improving kernel thread

might even pre-execute subsequent instructions following the I/O

3
Major page faults involve data movement between memory and storage devices,

while minor page faults only require metadata adjustments.
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Figure 1. System Architecture of the ITS Design.

request under our pre-execute policy proposed in Section 3.4.2 as

much as possible. The real effects of the pre-execute policy are

to populate the cache so that high-priority processes have better

chances to finish earlier. For ensuing computation correctness, the

pre-execute policy should not execute instructions related to the

result of the executing I/O instruction and could write to any vari-

able. In Section 3.4.3, a state-recovery policy is presented to restore

the CPU state of a high-priority process to its original state, which

might be updated by the execution of its self-improving kernel

thread.

3.2 Priority-aware Thread Selection Policy
The priority-aware thread selection policy selects to execute the

self-sacrificing kernel thread to yield the computation resources

occupied by a low-priority process or to run the self-improving ker-

nel thread to boost the progress of a high-priority process. Noting

that, our policy does not change the priority of each process and

the process-execution orders maintained by the process scheduler.

In this work, we compare the priority value of the current running

process against the next-to-be-run process to decide whether the

current running process is a low-priority or a high-priority process.

For example, the current running process will be identified as a low-

priority process if its priority value is lower than the next-to-be-run

process and vice versa.

Our ITS design activates exclusively during CPU idle time, run-

ning for a maximum of several microseconds to avoid impeding

process progress post-I/O completion. With a focus on maximizing

underutilized CPU resources, a primary objective is to minimize

the overhead in transitioning from the page fault handler to our ITS

designs. Consequently, all proposed software designs in this work

operate within the OS (i.e., in kernel space). This choice is made

because switching to kernel-level designs takes only hundreds of

nanoseconds, whereas transitioning to user-level designs demands

several microseconds.

The time advantage arises from two factors [2]: CPU mode

switching costs and context movement overhead. Firstly, when

executing the page fault handler or kernel-level designs, the CPU

remains in kernel mode, necessitating a mode switch to user mode

for user-level designs. Secondly, in Linux’s architecture, kernel

functions (e.g., the page fault handler and kernel-level designs)

share similar process contexts, leading to minimal overhead in

moving required contexts from DRAM to the CPU cache. Con-

versely, switching to other user-level designs mandates moving

entire process contexts since each user process possesses its own

context, encompassing the user stack and addressing space.

Figure 2. Design Concept of Page-Prefetch Policy.

3.3 Self-Sacrificing Kernel Thread
When a low-priority process is waiting for the I/O completion, the

self-sacrificing kernel thread forces this process to give up its CPU

resources even when it still has sufficient time slices. Specifically, all

high-priority processes only yield their CPU resources (i.e., execute

context switch) when their allocated time slices are exhausted. Still,

all low-priority processes are forced to switch their CPU resources

to other processes once they are waiting for I/O completion. Al-

though conducting process switching consumes more time than

busy waiting for the I/O completion, this earlier resource release

can benefit the high-priority processes’ progress in several aspects.

First, switching low-priority processes earlier can probably prevent

the low-priority process from evicting the data pages belonging to

the high-priority process, especially when the low-priority process

is a data-intensive application that leads to frequent page replace-

ments. Besides, CPU resources can be allocated to high-priority

processes more frequently so as to finish their progress earlier. Not-

ing that, low-priority processes seem to sacrifice their progress to

favor the execution of high-priority processes. Still, their finish time

will not be increased because low-priority processes can receive

more dedicated resources after the completion of high-priority pro-

cesses. The experiment results evaluating the process finish time

of low-priority processes are shown in Section 4.2.2.

3.4 Self-Improving Kernel Thread
High-priority processes retain resources until their allocated time

slice ends, unlike low-priority ones. Self-improving kernel threads

execute both page-prefetch and pre-execute policies to optimize

hardware resources for these high-priority processes.

3.4.1 Page-Prefetch Policy.
The goal of the page-prefetch policy is to conceal the time

taken to transfer data pages between storage and memory by pre-

emptively moving a group of anticipated pages, expected to be

accessed soon. Leveraging the substantial parallelism offered by

SSDs, this policy initiates a prefetcher to forecast the likely ac-

cessed pages. It then dispatches the physical addresses of these

pages to the DMA for relocation. Employing DMA for this task

bypasses utilizing CPU resources, allowing the CPU to focus on

other optimization tasks like the pre-execute policy mentioned

in Section 3.4.2. Our virtual-address-based data prefetcher walks

the page table to simultaneously translate the virtual address to

physical address and to find multiple candidate to-be-prefetched

pages, which are located right after the victim page on the virtual

addressing space. The victim page is the page that causes the page

fault. After finding those pages, our policy looks up the physical
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(a) Store Instructions. (b) Load Instructions.

Figure 3. Design Concept of Fault-aware Pre-execute Policy

address for each candidate page and sends these physical addresses

to the DMA for data moving.

Figure 2 illustrates the functionality of a virtual-address-based

page prefetcher operating on a 64-bit virtual address to find n

candidate pages. In a 64-bit x86_64 Linux system using 4-level

page tables, the prefetcher initially accesses the base address of

the Page Global Directory (PGD) table via the pgd base pointer

within the memory descriptor structure (mm_struct from the Linux

kernel) ( 1 ). Using the pgd_offset() function, a synthetic address is
generated by adding PGD offsets to the base PGD table address,

facilitating traversal to access the corresponding PGD entry ( 2 ).
This entry yields the base address of the Page Upper Directory

(PUD) table. Subsequently, the prefetcher navigates the PUD, Page

Middle Directory (PMD), and Page Table utilizing functions like

pud_offset(), pmd_offset(), and pte_offset() ( 3 4 5 ).
While traversing the page table, our policy iteratively increments

the page table offset and utilizes the pte_offset() function to retrieve

the candidate page following the victim page in the virtual address-

ing space ( 6 ). To prevent prefetching pages already present in

DRAM, the policy checks the present bit stored in the PT entry.

If the candidate page remains in storage, the policy retrieves its

physical address located between bit positions 12 and 48 in the PT

entry. In cases where an insufficient number of candidate pages is

gathered after walking through the entire page table, the policy

reverts to traversing the next PMD entry in the PMD table to access

an alternative page table ( 7 ).

3.4.2 Fault-aware Pre-execute Policy. The goal of fault-aware
pre-execution is to diminish CPU cache misses by pre-executing

upcoming instructions and caching data in the CPU cache during

I/O-related delays due to page fault handling. This strategy sig-

nificantly curtails cache misses as its effectiveness scales with its

execution duration, typically within several microseconds, aligning

with the time required to manage page faults.

A key challenge in pre-execution is handling instructions fol-

lowing a page fault-causing instruction. Invalid data in these sub-

sequent instructions can stall pre-execution. Invalid or bogus data

refers to data that hasn’t been recently accessed or is unknown.

For instance, the initial invalid data is what triggers the page fault.

Instead of halting pre-execution, our policy flags all instructions

interacting with invalid data as invalid. It skips executing these

invalid instructions and proceeds to execute the next valid one. Ad-

ditionally, to prevent execution on bogus data, our policy cascades

the invalid mark to all registers associated with an instruction if

any of its source registers are marked as invalid.

To implement this design, we expand the Register File (RF) by

adding additional “INV” bits for each register [5, 11]. Within each

CPU, we introduce a pre-execute cache, associating an "INV" bit

with each byte [11]. This cache stores both data values and their

associated INV statuses linked to retired store instructions from the

store buffer. Consequently, pre-execute load instructions dependent

on these retired store instructions can be verified by checking the

pre-execute cache. Notably, the pre-execute cache access is solely

permissible during pre-execution for load and store operations.

Additionally, we propose integrating an INV bit in each page table

entry. In Linux, several spare bits in the control-bit area of each

page table entry can be repurposed for the INV bit. This design

allows judgment of the pre-executed instruction’s data status if it

resides in the main memory or cache but not in the pre-execute

cache. This judgment occurs post-TLB access or CPU traversal

through the page table. Figure 3 illustrates the operation flow when

the pre-execute execution runs store and load operations.

The pre-execute store operation (refer to Figure 3a) becomes

invalid if its associated data resides in the storage device. In such

cases, our policy allocates a cache line in the pre-execute cache and

sets the INV bit for the written bytes ( 0 ). However, if the data is in
the DRAM or CPU cache, the pre-execute store operation remains

valid and writes the result into the store buffer. Simultaneously,

our policy manages the associated INV bit, setting or resetting it to

an invalid or valid state based on the data’s status ( 1 ). When the

corresponding data is in memory but not in the cache, a data fetch

query is sent to move it from memory (or DRAM in this context)

to the cache ( 2 ). Additionally, if the pre-execute store operation is

invalid, the INV bit in the page table entry corresponding to the data

is set. Upon writing the result of a pre-execute store operation to the

store buffer and needing to transfer it to the cache line in the pre-

execute cache, the INV bit for all written bytes in the pre-execute

cache is updated based on the operation’s status ( 3 ). Importantly,

pre-execute store operations do not write or modify any data in

the CPU cache or memory.

On the other hand, the pre-execute load operation (refer to Fig-

ure 3b) is invalid under several conditions. Firstly, when the required

data resides in the storage device ( 0 ) or depends on the result from

an invalid pre-execute store operation in the store buffer or pre-

execute cache ( 1 2 ). Moreover, if the data isn’t in the store buffer

or pre-execute cache but exists in the CPU’s main cache, the CPU

then checks the INV bit in the corresponding page table entry to

determine the operation’s status ( 3 ). Ultimately, if the data is only

available in memory, the pre-execute load operation becomes valid,

and the data is moved to the CPU cache ( 4 ).

3.4.3 State-Recovery Policy. Utilizing CPU resources with our

ITS design modifies the architectural register file state, potentially

affecting computation accuracy upon the CPU’s return to regular

processing. To ensure correctness, we adopt a state-recovery policy.

This policy checkpoints the register file state, including the program

counter and stack pointer, to a shadow register file (Figure 3) upon

ITS activation, restoring this information before ITS termination. To

sustain post-ITS process performance, critical registers such as the

branch history register and return address stack are checkpointed

to avoid reconstruction after ITS completion. The state-recovery

policy is triggered by either polling, where a timer periodically

checks I/O completion, or interruption, initiated by DMA upon I/O

completion in the self-improving kernel thread.

4 Performance Evaluation
4.1 Performance Metrics and Evaluation Setup
We evaluate the effectiveness of the proposed ITS design in reduc-

ing the CPU idle time and the process finish time. In particular,
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we evaluate both metrics by comparing the proposed idle-time-

stealing design (denoted as “ITS”) with four baseline approaches,

i.e., the traditional asynchronous I/O management method (denoted

as “Async”), the synchronous I/O method advocated by Intel and

IBM (denoted as “Sync”) [15] the synchronous I/O method with

only running the CPU runahead execution
4
[5, 10, 11] (denoted

as “Sync_Runahead”), which populates upper-level (e.g., L1 and

L2) caches by doing pre-execution during handling the last level

cache misses, and the synchronous I/O method with the page-based

prefetching policy
5
[17] (denoted as “Sync_Prefetch”).

To evaluate the effectiveness of our design, we implemented

an in-house trace-based simulator, including a simulated CPU de-

sign and a mini Linux-based kernel. The front end of our trace-

based simulator adopts the dynamic binary instruction tools, Val-

grind [12], to capture the accessed virtual addresses generated by

each benchmark or application. Our simulated CPU simulates a

16-way set associative 8MB Last-Level Cache (LLC), where a half

size of the LLC will be configured as the pre-execute cache for both

Sync_Runahead and ITS. We also integrate the pre-execute engine

with the simulated CPU. Our mini Linux-based kernel is crafted

based on the Linux kernel version 4.4. We integrate the page table

management with our virtual-address-based page prefetcher. To

support multi-programming, our mini kernel includes the Linux

real-time round-robin process scheduler (i.e., SCHED_RR). The pri-

ority of each process is assigned randomly, and the allocation of

time slices follows Linux NICE mechanism. That is, the time slice

allocated to the highest and lowest priority processes is set to 800

ms and 5 ms, respectively. According to our measurements, the

time elapsed for performing a context switch is 7 𝜇𝑠 on the machine

with Intel Core i7-7800X CPU running Linux kernel version 4.4.

The DRAM size is tailored to match the working set, while the

ULL storage device size accommodates the memory footprint of

general-purpose processes. The working set is defined as the mini-

mum memory size capable of capturing over 99% of accesses result-

ing from CPU cache misses. The memory footprint refers to the

total size of memory pages accessed by a process. The access latency

for DRAM and the ULL storage device, exemplified by Samsung

Z-NAND SSD with latencies of 50ns [3] and 3us [9], respectively.

To model the data bus, we simulate a 4-lane PCIe 5.x host inter-

face between the DRAM and ULL devices, providing approximately

3.983 GB/s bandwidth per lane.

Nine representative traces covering six general-purpose pro-

cesses and three data-intensive processes are evaluated in our eval-

uations. Specifically, six general-purpose processes include one

deep learning application (i.e., using Caffenet on inferencing 160

images), one from SPEC CPU
®
2006 (i.e., Wrf), three from SPEC

CPU
®
2017 (i.e., Blender, Xz, and DeepSjeng), and one from graph

application (i.e., running community detection algorithm on the

graph framework, GraphChi [8].) Three data-intensive processes in-

clude one from Graph500 benchmark (i.e., single shortest path) and

two graph applications (i.e., running random walk and page rank

on GraphChi). We build four synthesis process batches by selecting

six processes among the nine traces, including different numbers

of data-intensive processes. All four process batches comprise Wrf,

Blender, and community detection. Besides, No_Data_Intensive

comprises Caffe, DeepSjeng, and Xz. 1_Data_Intensive comprises

Caffe, DeepSjeng, and random walk. 2_Data_Intensive comprises

DeepSjeng, random walk, and Graph500. 3_Data_Intensive com-

prises random walk, Graph500, and page rank.

4
Traditional runahead execution runs the pre-execution during handling cache misses,

but ours does the pre-execution during handling page faults.

5
It groups a static number of pages with continuous page id into a page-on-page unit

and fetches an entire unit during handling a page fault.

4.2 Evaluation Results
4.2.1 Evaluation on the Total CPU Idle Time. The proposed
idle-time-stealing design steals the idle CPU resource for pre-caching

data to memory and CPU cache to reduce future page faults and

the total CPU idle time. The definition of CPU idle time is the time

that the CPU’s progress cannot proceed because it is waiting for

the completion of memory or storage requests. Figure 4 shows the

results of the normalized total CPU idle time and two supportive

metrics: the number of page faults and CPU cache misses. Figure 4a

provides the results of the normalized total CPU idle time under ap-

plying our ITS design against the four baseline approaches, where

the x-axis indicates four different process batches and the y-axis

shows the total CPU idle time normalized to the ITS design. Com-

paring the ITS design with the four baseline approaches (including

Async, Sync, Sync_Runahead, and Sync_Prefetch), the total CPU

idle time can be saved at most 66%, 43%, 37%, and 15%, and saved

at least 61%, 17%, 7%, and 10% respectively.

Two main reasons explain the significant reduction of the total

CPU idle time. First, for tackling the process batches with fewer

data-intensive processes (i.e., no_Data_Intensive and 1_Data_Intensive),

our self-improving thread can effectively reduce the numbers of

page faults as shown in Figure 4b, where the unit of the y-axis is a

hundred thousand counts. With running no_Data_Intensive and

1_Data_Intensive, ITS can save at least 65% and 61% of the numbers

of page faults compared with the Async, and Sync approaches. The

reason is that the access behaviors of non-data-intensive processes

are easily predicted by our page-prefetch policy. Thus it can ac-

curately prefetch those pages to memory. Second, for the process

batches with more data-intensive processes (i.e., 2_Data_Intensive

and 3_Data_Intensive), our self-improving thread can also effec-

tively reduce the numbers of CPU cache misses as shown in Fig-

ure 4c, where the unit of the y-axis is amillion counts. The reduction

of the CPU cache misses is contributed by the fault-aware pre-

execute policy. Based on our design, the fault-aware pre-execute

policy will only be triggered during the OS handling a page fault,

and thus the fault-aware pre-execute policy can save more CPU

cache misses if more page faults are triggered.

Our ITS design can still outperform the Sync_Runahead ap-

proach in all cases, even though the Sync_Runahead approach is

more effective in reducing CPU cache misses, as shown in Figure 4c.

The reason is that our page-prefetch policy will reduce the num-

ber of page faults, and thus our ITS design runs the pre-execute

execution infrequently than the Sync_Runahead approach. But,

handling page faults is more time-consuming than handling CPU

cachemisses. On the other hand, our ITS design can also outperform

the Sync_Prefetch approach, which executes the virtual-address-

based page-prefetch policy to minimize the number of page faults.

The reason is that not only running both pre-execution and page

prefetching, our ITS design will also schedule the self-sacrificing

thread to further save the number of page faults. The rationale

is that the self-sacrificing thread avoids pages belonging to low-

priority processes to kick out high-priority process’s pages so as

to avoid both high-priority and low-priority processes contending

the memory resources.

4.2.2 Evaluation on the Average Process Finish time. To
demonstrate the efficacy of the self-sacrificing thread, Figure 5

presents an analysis of average process finish times. We highlight

the average finish times of the top 50% and bottom 50% priority pro-

cesses in each batch, in Figure 5a and Figure 5b, respectively. The

x-axis represents different process batches, and the y-axis shows

average process finish times normalized to our ITS design. Fig-

ure 5a illustrates the effectiveness of our ITS design in reducing

average process finish times for the top-priority processes, with sav-

ings ranging from 75% to 14% when compared to the four baseline
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Figure 5. Evaluation on the Average Process Finish time

approaches. In Figure 5b, comparing our ITS design with base-

line approaches (Async, Sync, Sync_Runahead, and Sync_Prefetch),

the finish time of the three lower-priority processes can be saved

up to 58%, 27%, 24%, and 17%, and at least 34%, 21%, 13%, and

11%, respectively. These findings affirm that the self-sacrificing

thread in our ITS design enhances the progress of both high- and

low-priority processes. That is, self-sacrificing threads compel low-

priority processes to yield to high-priority ones before completing

their allocated time slice. This enables low-priority processes to

access additional resources, including memory and CPU, without

interference from high-priority processes that finish earlier.

5 Conclusion
Synchronous I/O mode becomes promising when the storage re-

sponse time catches up with the context switch overhead. However,

synchronously waiting for the I/O completion incurs a consider-

able amount of CPU idle time. An Idle-Time-Stealing (ITS) design

is proposed to better utilize otherwise-wasted I/O busy time. Prac-

tically, we propose to have a self-improving kernel thread to do

page-prefetching and fault-aware pre-execute execution for high-

priority processes during some synchronous I/O time. We also pro-

pose a self-sacrificing kernel thread to proactively switch out the

low-priority process so as to favor high-priority process executions.

The evaluation results show that our ITS design could effectively

reduce the CPU idle time by around 61%∼66% and 17%∼43%, than
those with totally the asynchronous I/O mode and the synchronous

I/O mode, respectively.
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