
UPVSS: Jointly Managing Vector Similarity Search
with Near-Memory Processing Systems

Chun-Chien Liu∗, Chun-Feng Wu∗, Yunho Jin†
∗Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan

†Department of Computer Science, Harvard University, USA
Corresponding Author: Chun-Feng Wu

E-mail: ccliu.cs12@nycu.edu.tw, cfwu417@cs.nycu.edu.tw, yjin@g.harvard.edu

Abstract—Vector similarity search plays a pivotal role in
modern applications, including recommendation systems, image
search, large language models (LLMs), and high-dimensional
data retrieval. As data size scales, our research reveals that
the search phase imposes substantial demands on DRAM band-
width, leading to performance limitations in conventional von
Neumann architecture with shared memory buses. This data
movement bottleneck restricts the efficiency and scalability of
vector similarity search due to insufficient memory bandwidth.
To mitigate this issue, we leverage UPMEM, an off-the-shelf
near-memory processing (NMP) system, to minimize the data
movement between memory and compute units. However, UP-
MEM’s computing engine has certain limitations and requires
thorough application integration to unleash its high-parallelism
capabilities. In this work, we introduce UPMEM-aware Vector
Similarity Search (UPVSS), an architecture-aware system that
jointly manages vector similarity search and UPMEM’s NMP
technology. UPVSS prioritizes offloading operations based on
their strengths and capabilities, effectively alleviating the data
movement bottleneck and improving overall system performance.

Index Terms—Vector Similarity Search, LLM, Inverted File,
FAISS, K-NN, PIM, UPMEM, HW/SW Codesign, Parallelism

I. INTRODUCTION

Vector similarity search is a cornerstone of various appli-
cations, including large language models (LLMs) [8], [10],
[26], recommendation systems [3], [33], image search [15],
information retrieval [16], [24], and data retrieval in natural
language processing. Instead of processing raw data like
images or documents, modern systems represent them as high-
dimensional vectors encoding features such as color or edges.
Comparing these vectors enables efficient retrieval of similar
data points. As systems and data volume scale, the number of
vector dimensions has grown significantly, with models like
OpenAI’s GPT-3 producing embeddings with thousands to tens
of thousands of dimensions [23], [34]. Our analysis indicates
that running similarity searches on high-dimensional vectors
is memory-bound, with cycles per instruction (CPI) values ex-
ceeding one due to frequent data movements between memory
and CPU cache, which quickly saturate DRAM bandwidth. To
address the immense memory bandwidth demand, this work
integrates vector similarity search with a real near-memory
processing system, UPMEM.

Exact similarity search requires brute-force distance cal-
culations between all vectors, which is inefficient for large-
scale, high-dimensional data [32]. To overcome this, mod-

ern applications use Approximate Nearest Neighbor (ANN)
search, offering a balance between speed and accuracy. State-
of-the-art ANN algorithms include cluster-based (e.g., Inverted
File (IVF) [11]), graph-based (e.g., HNSW [20], NSG [7]),
hash-based [38], and tree-based algorithms [27]. However,
tree-based algorithms lack scalability for high-dimensional
vectors [36], hash-based algorithms suffer from lower accuracy
on large-scale datasets [19], and the memory consumption of
graph-based algorithms grows rapidly with dataset size, mak-
ing them unsuitable for large-scale applications [29]. Indus-
trial vector similarity search libraries, like Meta’s FAISS [6],
[25], recommend using the IVF for managing large-scale
high-dimensional vector datasets. Despite the use of ANN
algorithms, the search phase remains limited by the memory
bandwidth constraints of the von Neumann architecture, which
struggles to meet the high DRAM bandwidth demands of
vector similarity search.

Processing-in-memory (PIM) technologies are emerging as
efficient solutions to the challenges of excessive data move-
ment by bringing compute and memory units closer together.
PIM can be broadly categorized into two types: processing-
using-memory (PUM), where memory units perform compu-
tation, and near-memory processing (NMP), which integrates
compute elements directly into memory modules. Emerging
non-volatile memory technologies, such as ReRAM, enable
analog-based PUM devices like ReRAM crossbars [14], [28]
and TCAM [30], which are particularly effective for matrix
multiplication and table look-up tasks. However, these de-
vices rely heavily on Digital-to-Analog Converters (DAC) and
Analog-to-Digital Converters (ADC), which together account
for more than half of their total energy consumption and area
costs [18], [39]. As a result, the significant cost associated
with converting signals between analog and digital forms poses
a major challenge to the widespread commercialization of
analog-based PIM devices.

In contrast, UPMEM [4], [9], a recent NMP system, is
the first commercially available off-the-shelf PIM device.
UPMEM integrates DRAM Processing Units (DPUs) that
combine general-purpose RISC processors with traditional
2D DRAM arrays on a single chip. Current UPMEM NMP
systems support up to 2560 DPUs, each offering 1 GB/s of
internal DRAM bandwidth, resulting in an impressive aggre-
gate internal bandwidth of up to 2.56 TB/s. However, running
applications on UPMEM naively can lead to challenges such

as frequent out-of-memory (OOM) errors due to its limited 64
MB of isolated memory per DPU and significant performance
drops caused by high data transmission costs. Consequently,
existing research has focused on adapting UPMEM for appli-
cations in analytics and databases [1], [13], [17], bioinformat-
ics [2], [5], and data compression and decompression [21].
However, none of these works have explored its potential
integration with vector similarity search.

Based on our investigations, running IVF-based vector
similarity search directly on UPMEM encounters three sig-
nificant challenges: (1) Each IVF cluster contains numerous
high-dimensional vectors, often exceeding a DPU’s available
memory capacity (64 MB), leading to frequent out-of-memory
(OOM) issues. (2) Migrating vectors between DPUs incurs
substantial overhead due to costly data movement. (3) To
fully utilize the DPU hardware pipeline, it is required to
schedule at least 11 hardware threads (also known as tasklets)
to execute concurrently. Motivated by the need to address
these challenges and enable efficient vector similarity search
on UPMEM, this paper introduces UPVSS, a UPMEM-aware
Vector Similarity Search framework. UPVSS incorporates two
key components. The first is the DPU-aware Clusters Parti-
tion, which evenly splits the vectors within each IVF cluster
while accounting for the DPU’s architectural constraints. The
second is the DPU-aware Vector Similarity Search Coordina-
tor, which strategically offloads vector distance calculations to
DPUs and leverages task pipelining to fully exploit the high
parallelism offered by the DPUs.

The rest of this paper is organized as follows: Section II
presents the background, observation, and motivation. In Sec-
tion III, the UPVSS is introduced to enhance query processing
performance. Section IV provides the analysis and experimen-
tal results. Section V concludes this work.

Vector Similarity Search Engine

Index Construction

Index

Database Vectors

Query Vectors

Construct index1

2
Search for k-Nearest
Neighbors (Vectors)

<ID, dist>
pair

xk
Result of k-NN vectors

Database Vectors

Centroids

1 Adding

Search

K-Means Clustering

Inverted File List

Centroid 1
(Cluster #1)

Centroid 2
(Cluster #2)

… Centroid nlist
(Cluster #nlist)

Vector 5

Vector 2 Vector 1

Vector 6

Vector 4

Vector 3

…

…

…

Top nprobe
Nearest Centroids

k-NN
results

Clustering

3

Database Vectors

2

Distance
Calculation

Top-k
Sorter

……

k-Nearest Neighbors
(k-NN) Search

Fig. 1: The workflow of vector similarity search (left), along
with the Inverted File (IVF) ANN index algorithm (right).

II. BACKGROUND, OBSERVATION, AND MOTIVATION

A. Background

1) Vector Similarity Search
The typical workflow of vector similarity search consists of

two steps, as illustrated in Fig. 1 (left). 1 Index Construc-
tion: An index is constructed to facilitate efficient searching
over the database vectors, enabling effective pruning of the

search space during the query phase. This process is concep-
tually analogous to building traditional data structures such as
B-trees or binary search trees, where the data is organized in a
manner that allows the search algorithm to quickly eliminate
regions unlikely contain the target items. Several indexing
techniques have been developed for vector similarity search,
such as KD-Tree, R-tree. 2 k-Nearest Neighbors (k-NN)
Search: Upon receiving a query vector, the system searches
for the top-k similar vectors within the database vectors
using a distance function, such as Euclidean distance, cosine
similarity. This step involves extensive distance calculations
and top-k sorting operations. The result of this step includes
the identifiers of the k-NN in the database vectors along with
their corresponding distances.

2) Approximate Nearest Neighbor (ANN) Index
Performing exact nearest neighbor search on high-

dimensional vectors is computationally demanding and often
impractical for large-scale applications [32]. Approximate
Nearest Neighbor (ANN) methods address this challenge by
reducing search time through a controlled approximation of k-
NN results. This trade-off between accuracy and efficiency is
suitable for many applications where near-optimal results are
sufficient, such as LLMs and recommendation systems. Sev-
eral ANN algorithms, including tree-based, hash-based, and
graph-based methods, perform efficiently for low-dimensional
applications but struggle with large-scale, high-dimensional
vectors [19], [29], [36]. In contrast, the Inverted File (IVF1)
index (or cluster-based ANN index) is commonly employed to
handle large-scale, high-dimensional vectors effectively [11].

Fig. 1 (right) illustrates the workflow of the Inverted File
(IVF) index. 1 Clustering Phase: The database vectors are
partitioned into nlist disjoint clusters by applying a clustering
algorithm, typically k-means, to generate a list of centroids,
where each centroid represents the center of a cluster. 2
Adding Phase: Once the centroids are established, each
database vector is assigned to its nearest centroid based on
distance function and stored in the corresponding inverted
file list associated with that centroid. This structure enables
efficient search by restricting future queries to only the most
relevant clusters. 3 Search Phase: The system begins by
calculating the distances between the query vector and all cen-
troids to identify the nprobe closest centroids, which represent
the most relevant clusters for the query. Then, only the vectors
within the top-nprobe closest centroid-associated clusters are
scanned. For each vector in these clusters, the system performs
distance calculations and employs a top-k sorting mechanism
to determine the final k-NN results.

3) Off-The-Shelf NMP system: UPMEM
Near-memory processing (NMP) technology, which places

computing units closer to memory, offers a promising solution
to alleviate the data movement bottleneck across the shared
bus between memory and compute units. The UPMEM NMP
system is an off-the-shelf commercial solution, consisting of
host CPUs, DRAM, and NMP memory modules (UPMEM
DIMM modules), as shown in Fig. 2. The current system sup-
ports up to 20 UPMEM DIMMs, with each DIMM containing
128 DRAM processing units (DPUs), which are specialized

1IVF is included in industrial vector similarity search libraries, such as
Meta FAISS.

2

Host
CPUs

DRAM
Bank

……

Traditional DRAM DIMMs

UPMEM NMP DIMMs

DPU #0

64-MB
DRAM BANK

(MRAM)

DRAM
Bank

DRAM
Bank

DPU #127

64-MB
DRAM BANK

(MRAM)

DPU #1

64-MB
DRAM BANK

(MRAM)

……

MRAM is not shared between different DPUs

Transfer API

Control API

Send/receive data
to/from DPUs

Send commands
to control

executon of DPUs

xN

xM

Compute Units

Memory Units

Data Access

24-KB
IRAM

64-KB
WRAM
(SRAM)

64-MB
DRAM Bank

(MRAM)

D
M

A
 E

ng
in

e
(u

p
to

 1
 G

B
/s

)

Inside each DPU

DPU
RISC core

14 stage Pipeline

TaskletTaskletTasklet

Register FileRegister FileRegister File
x24

x24

Fig. 2: The high-level architecture of UPMEM NMP
system.

RISC processors embedded directly within standard DDR4
DRAM chips. Each DPU is connected solely to a dedicated
64 MB local DRAM bank, called MRAM, along with a 24
KB instruction memory (IRAM) and a 64 KB fast working
memory (WRAM) serving as cache buffer. DPUs can only
access their own MRAM, with no support for direct inter-
DPU communication, thereby preventing data sharing between
DPUs. Developers can implement customized WRAM mem-
ory management for their applications, optimizing resource
utilization and improving overall performance. A DPU has 24
hardware threads, also known as tasklets, with each tasklet
containing 24 32-bit registers. The DPU has a pipeline depth
of 14 stages; however, due to hardware constraints, at least 11
tasklets must run concurrently to fully utilize the pipeline.

The UPMEM SDK [31] provides both control and transfer
APIs, enabling the host CPUs to send and receive data to
and from the MRAM of each DPU. This allows indirect
communication between DPUs through host CPU intervention
by copying data via the intermediate host DRAM. In addition,
the host CPUs issue commands to the DPUs to control and
manage their execution, enabling coordinated operation across
multiple DPUs. Each DPU’s internal DRAM bandwidth can
reach up to 1 GB/s [4]. As a result, when all DPUs are active,
the UPMEM NMP system achieves an aggregate internal
DRAM bandwidth of up to 2.56 TB/s.

B. Observation & Motivation

Vector similarity search engines, such as Meta FAISS [6],
[25], have been extensively optimized for traditional CPU
architectures [22], [37]. However, these systems are funda-
mentally constrained by the von Neumann architecture, where
CPU cores share memory and a common bus. When multi-
ple threads perform concurrent k-Nearest Neighbors (kNN)
searches, data movement between memory and CPU cache
quickly saturates memory bandwidth, preventing linear perfor-

1 2 4 8 16
Threads (log scale)

0

20

40

60

80

100

120

Se
ar

ch
 T

im
e

(s
)

S2048
D2048

(a) Search Time

1 2 4 8 16
Threads (log scale)

0

1

2

3

4

5

6

Cy
cl

es
 P

er
 In

st
ru

ct
io

n
(C

PI
)

CPI > 1

S2048
D2048

(b) CPI

1 2 4 8 16
Threads (log scale)

0
25
50
75

100
125
150
175

Lo
ad

 L
at

en
cy

 (
cy

cl
es

) S2048
D2048

(c) Load Latency

1 2 4 8 16
Threads (log scale)

0
10
20
30
40
50
60
70

D
RA

M
 B

an
dw

id
th

 (
G

B/
s) Maximum BandwidthS2048

D2048

(d) DRAM Bandwidth

Fig. 3: Experimental evaluation of FAISS-IVF. The
datasets and parameter settings are provided in Table I
and Table II, respectively.

mance scaling with added threads. Our analysis reveals that
vector similarity search engines are memory-bound due to a
low CPU cache reuse rate and low computational intensity.
Most database vectors in the CPU cache are used for a single
distance calculation and then flushed, limiting reuse. Addi-
tionally, each distance calculation involves few instructions
yet requires moving large vectors, which fails to amortize
the cost of data transfer. This issue is particularly evident
in modern implementations like FAISS, which employs Intel
Advanced Vector Extensions 2.0 (AVX22) to process multiple
data simultaneously per instruction.

We conduct a series of observational experiments, as shown
in Fig. 3, to demonstrate that FAISS-IVF performance sat-
urates as additional threads are added and to analyze the
underlying causes of this saturation. We run Meta’s FAISS-
IVF on a system featuring an Intel i7-12700 processor and
128 GB of DDR5 DRAM, providing a theoretical peak DRAM
bandwidth of 59 GB/s. We use Intel Vtune to profile the hard-
ware usage while running FAISS-IVF. As shown in Fig. 3(a),
the total search times for running FAISS-IVF over S2048 and
D2048 datasets scale with the number of CPU threads, with
the x-axis representing thread count and the y-axis indicating
total vector search time. The results reveal that FAISS-IVF
achieves limited performance gains and poor scalability as
thread count increases, with overall search time plateauing
beyond 8 threads.

Fig. 3(b) illustrates the cycles per instruction (CPI), with the
x-axis representing the number of CPU threads and the y-axis
denoting the CPI. The results indicate that CPI increases with
the number of CPU threads, exceeding 1 for both datasets,
which suggests the system is likely memory-bound. This is
notable given that modern superscalar processors can issue up
to four instructions per cycle. To investigate the high CPI,

2Intel AVX2 is an x86 instruction set extension enabling 256-bit wide
processing for integer operations.

3

Fig. 3(c) shows that average load latency also rises with
more CPU threads, likely due to congestion in the shared
DRAM bus. This congestion causes load instructions to queue,
increasing latency. Additionally, Fig. 3(d) reveals that DRAM
bandwidth utilization saturates as thread count grows. By the
time thread count reaches 8, DRAM utilization approaches its
theoretical peak, confirming that limited performance gains
stem from the shared memory bus failing to meet increased
memory bandwidth demands. This challenge intensifies with
high-dimensional vectors, as limited cache space can store
fewer vectors. These observations highlight the need for a
near-memory processing (NMP) system to address the data
movement bottlenecks encountered in vector similarity search.

III. UPVSS: UPMEM-AWARE VECTOR SIMILARITY

SEARCH

A. UPVSS System Architecture Design Overview
The primary constraints of UPMEM DPUs are (1) each

DPU’s MRAM is limited to 64 MB, making efficient data
placement a non-trivial task; (2) MRAM is not shared across
DPUs, resulting in costly inter-DPU communication; and
(3) to fully utilize the DPU hardware pipeline, at least 11
hardware threads (tasklets) must run concurrently. This sec-
tion introduces our UPMEM-aware Vector Similarity Search
(UPVSS) system, designed to tightly integrate vector similarity
search with UPMEM DPUs to address the data movement bot-
tleneck encountered in von Neumann architecture. In addition,
it aims to overcome the constraints of the DPU architecture
and fully exploit its capabilities, particularly its high paral-
lelism and substantial aggregate internal DRAM bandwidth,
which can reach up to 2.56 TB/s.

Our UPVSS comprises two key components. First, the
DPU-aware Clusters Partition evenly splits the vectors be-
longing to each IVF cluster, with considering the DPU archi-
tecture. This enables future k-NN search operations without
requiring synchronization across DPUs and ensures that all
DPUs are actively utilized, leveraging both the high paral-
lelism and substantial aggregate internal DRAM bandwidth.
Second, the DPU-aware Vector Similarity Search Coordinator
significantly reduces data movement across the shared bus
between host CPU and host memory during the search phase
by offloading distance calculations to DPUs. Additionally, it
facilitates collaboration between vector similarity search and
DPUs and incorporates customized WRAM memory manage-
ment to further optimize performance, considering running
multiple tasklets to fully utilize the DPU hardware pipeline.

B. DPU-aware Clusters Partition
The key to implementing UPMEM-aware Vector Similarity

Search lies in effectively distributing the vectors of each cluster
across the DPUs. Upon receiving a query vector, it is then
broadcast to each DPU that holds a portion of database vectors,
allowing the DPUs to collaboratively work with the host CPUs
to determine the final k-nearest neighbors (k-NN) results. To
realize this, we propose DPU-aware Clusters Partition, which
ensures a balanced distribution of clusters across all DPUs to
maximize parallelism and resource utilization.

As shown in Fig. 4, our system begins with IVF index
construction on the host side, where the host organizes the

DPU #2

Host Side

Database Vectors

Inverted File List

x nlist

Inverted File (IVF) Index

Construct IVF Index

Centroid 1
…
…

Group1

Split

UPMEM Side

DPU #N

…
…Transfer

The vectors of cluster #1

Cluster ID: 1

x nlist

A subset of the vectors
in cluster #1

Group2
x nlist

Cluster ID: 1

GroupN
x nlist

A subset of the vectors
in cluster #1

DPU #1
Cluster ID: 1

Cluster ID: 1

Fig. 4: DPU-aware Clusters Partition for UPVSS system.

database vectors into multiple clusters, each with an associated
centroid. These database vectors are then inserted into the
corresponding inverted file list of that centroid within the IVF
index structure. To ensure all DPUs are activated during k-
NN searches, we then evenly partition the vectors of each
cluster into N groups. More precisely, the vectors within each
centroid-associated cluster in the IVF index are divided into
N equal segments, ensuring that each group receives a subset
of every cluster. After partitioning, each of these N groups is
then transferred to N distinct DPUs within the UPMEM NMP
system, where N represents the maximum operational DPUs.
With this partition strategy, all DPUs are actively utilized
during the search phase, as each DPU contains a subset of
every cluster.

C. DPU-aware Vector Similarity Search Coordinator

Fig. 5 provides a comprehensive overview of the DPU-
aware Vector Similarity Search Coordinator, which encom-
passes the joint management and coordination between the
host CPUs and DPUs. Given that the search phase primarily
involves extensive distance calculations with low computa-
tional intensity, it cannot amortize the cost of data movement.
Therefore, the core concept of DPU-aware Vector Similarity
Search Coordinator is to offload these distance calculations
between the query vector and database vectors to the DPUs.
The host then collects ⟨ID, dist⟩ key-value pairs returned by
all DPUs and merges them to obtain the final k-NN results.
This approach significantly reduces data movement across the
shared bus, thereby enhancing the CPU cache utilization, as
each ⟨ID, dist⟩ pair is considerably smaller than each database
vector. Furthermore, the distance calculations for vectors on
each DPU are independent, eliminating the need for inter-
DPU synchronization and thus effectively leveraging the high
parallelism of the UPMEM system.

The workflow of the DPU-aware Vector Similarity Search
Coordinator on the host side is as follows: 1 The host receives
the query vector and identifies the nprobe closest centroids,
determining the specific nprobe clusters for the DPUs to
perform distance calculations. The IDs of these clusters are
then combined with the query vector to form the Query
Metadata. 2 The Query Metadata is broadcast to all DPUs.
3 The host sends commands to launch each DPU, prompting

them to execute distance calculations for the specified clusters

4

Fig. 5: The workflow of DPU-aware Vector Similarity
Search Coordinator.

based on the cluster IDs in the Query Metadata. 4 Upon
completing the distance calculations, each DPU generates a
set of ⟨ID, dist⟩ pairs as partial results, which are then sent
back to the host CPU for further processing. 5 Finally, the
host merges all ⟨ID, dist⟩ from each DPU to determine the final
k-NN results. Note that steps 1 – 5 are executed iteratively
to continuously process incoming queries.

To further optimize performance and facilitate the efficient
and concurrent execution of multiple tasklets, the workflow of
the DPU-aware Vector Similarity Search Coordinator on the
DPU side is organized as follows: 1 We design a dedicated
Query Cache in WRAM to store the Query Metadata, allowing
it to be shared among all tasklets within the same DPU
and ensuring rapid access. 2 The subset of vectors assigned
to each DPU is then evenly distributed across all active
tasklets. Each tasklet has its own 2 KB Vector Cache in
WRAM, allowing it to independently hold and process its
assigned portion of the vectors. 3 Subsequently, each tasklet
performs distance calculations on its designated vectors, with
the resulting ⟨ID, dist⟩ pairs stored in a shared Key-Value
Pairs Cache accessible to all tasklets. 4 The Key-Value Pairs
Cache is configured with a fixed size of 2 KB, in accordance
with the DPU architecture’s limitation of a maximum 2 KB
per WRAM-to-MRAM transfer [31]. Moreover, prior research
indicates that this transfer size minimizes data movement
overhead [9]. With this configuration, the cache can store up
to 256 ⟨ID, dist⟩ pairs in WRAM. Once the Key-Value Pairs
Cache reaches capacity, a designated tasklet is responsible for
managing the transfer and writing the cached result back to
persistent key-value storage in MRAM. The workflow and
WRAM memory management strategy effectively optimize
WRAM cache buffer utilization and enable concurrent multi-
tasklet execution with minimal synchronization overhead, en-

hancing parallelism at the software level and fully utilizing the
DPU pipeline at the hardware level.

IV. EXPERIMENT

A. Experiment Setup
This section evaluates the effectiveness of the proposed

UPVSS system for improving the query processing perfor-
mance. We compare the performance of the UPVSS with the
state-of-the-art FAISS library, which is optimized using multi-
threading with OpenMP, AVX2 SIMD vector instructions,
and the BLAS (Basic Linear Algebra Subprograms) library
to accelearate linear algebra computations. Both UPVSS and
FAISS are evaluated using the IVF ANN indexing algorithm
on the same system.

The experiments were conducted on a commercially avail-
able UPMEM near-memory processing (NMP) server running
a Linux-based environment. The server is powered by two
Intel Xeon Silver 4216 CPUs and equipped with 256 GB of
DRAM, offering a theoretical peak bandwidth of 32 GB/s.
Additionally, the system is equipped with 64 GB of UPMEM
NMP memory distributed across 8 UPMEM DIMM modules,
incorporating a total of 1024 DRAM Processing Units (DPUs).
For baseline comparisons, the FAISS library was configured
to run with 64 CPU threads.

The datasets used to evaluate the performance of the pro-
posed UPVSS against FAISS are summarized in Table I.
These datasets are synthesized based on the distributions
of real-world SIFT [11], [12] and DEEP [35] datasets to
generate high-dimensional vectors with dimensions of 2048,
3072, and 4096, named S2048, S3072, S4096, D2048, D3072,
and D4096. Each dataset comprises 1 million (1M) database
vectors and 1000 query vectors, with all vectors quantized to
8-bit integer format (uint8 t). Table II provides the default
parameter settings used in our experiments along with a
description of each parameter. Unless otherwise specified, all
experiments were conducted using these default settings.

Dataset # Dims # Vectors Dataset # Dims # Vectors
S2048 2,048 1,000,000 D2048 2,048 1,000,000
S3072 3,072 1,000,000 D3072 3,072 1,000,000
S4096 4,096 1,000,000 D4096 4,096 1,000,000

TABLE I: Datasets.

Parameters Default value & Explanation
k Top-k closest vectors when performing vector similarity

search. Default value: 100
nlist The number of clusters used to partition the database

vectors. Default value: 250
nprobe The number of nearest clusters explored during the k-NN

search phase. Default value: 20

TABLE II: Parameters setting.

B. Experiment Results

1) Performance Results over State-Of-The-Art
Fig. 6(a) presents the total search time of the proposed UP-

VSS compared with the state-of-the-art FAISS, both running
the IVF indexing algorithm across six datasets. The x-axis
represents the six different datasets, while the y-axis indicates

5

D2048 S2048 D3072 S3072 D4096 S4096
Dataset

0

50

100

150

200

250

300
Se

ar
ch

 T
im

e
(s

)
FAISS
UPVSS

(a) Search time comparison with FAISS.

1 2 4 8 12 16
Tasklets

0

2

4

6

8

10

12

Sp
ee

du
p

of
 D

PU
 T

im
e D2048

D3072
D4096

(b) Impact of tasklets on DPU time.

256 512 768 1024
DPUs

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

of
 D

PU
 T

im
e D2048

D3072
S2048
S3072

(c) Scalability with increasing DPUs.

Fig. 6: Performance and scalability evaluation of UPVSS.

the total search time for UPVSS and FAISS on each dataset.
The results show that UPVSS can reduce the overall search
time by 30% to 46% and achieves a speedup of 1.42x to 1.86x
compared to FAISS across all datasets.

To validate the efficiency of our WRAM memory man-
agement in DPU-aware Vector Similarity Search Coordinator
under multi-tasklet execution, Fig. 6(b) presents the speedup
of DPU execution time with respect to the number of tasklets
per DPU across three datasets: D2048, D3072, and D4096.
The x-axis represents the number of tasklets, while the y-
axis denotes the speedup of DPU execution time relative to
a single tasklet. The results show that the speedup of UPVSS
scales linearly with the number of tasklets and saturates at
12 tasklets, consistent with the hardware constraints of the
DPU. This indicates that UPVSS effectively maximizes the
utilization of the DPU hardware pipeline.

2) Scalability of UPVSS

Fig. 6(c) shows the scalabiltiy of UPVSS with respect to
the number of active DPUs. The x-axis represents the number
of DPUs activated in the system, while the y-axis denotes the
speedup of DPU execution time relative to 256 DPUs. The
results show that the speedup of UPVSS scales linearly with
the number of active DPUs. This scalability can be attributed
to the DPU-aware Clusters Partition, which balances each
cluster across DPUs, and the DPU-aware Vector Similarity
Search, which offloads distance calculations to DPUs, signifi-
cantly reducing data movement across the shared bus. Unlike
conventional CPU architectures, UPVSS can further enhance
performance by increasing the number of DPUs.

3) The impact of nlist

Fig. 7 shows the performance evaluations across six datasets
for varying nlist values. The x-axis represents different nlist
values, while the y-axis denotes the normalized speedup in
performance relative to FAISS. The results indicate that UP-
VSS achieves a speedup of 1.42x to 2.62x compared to FAISS
across all datasets, with an average speedup of 1.95x. Notably,
as nlist value decreases, the number of vectors assigned to each
cluster increases. This leads to more distance calculations per
query, futher amplifying the memory-bound nature of FAISS.
Consequently, UPVSS achieves higher speedups compared to
FAISS.

250 200 150 100 50
#nlist

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 S
pe

ed
up

D2048
S2048

D3072
S3072

D4096
S4096

Fig. 7: Normalized speedup of UPVSS compared to FAISS
for different nlist values.

V. CONCLUSION

Aiming to address the data movement bottleneck encoun-
tered in vector similarity search due to low computational
intensity of distance calculations and substantial data move-
ment across the shared bus, this paper proposes the UPMEM-
aware Vector Similarity Search (UPVSS), an architecture-
aware system that jointly manages vector similarity search
and UPMEM’s near-memory processing (NMP) technology
to tackle this challenges. UPVSS comprises two key com-
ponents: (1) DPU-aware Clusters Partition, which evenly
splits vectors while accounting for the DPU’s architectural
constraints, unlocking its high parallelism and substantial ag-
gregate internal DRAM bandwidth; and (2) DPU-aware Vector
Similarity Search Coordinator, which significantly reduces
data movement across the shared bus by offloading distance
calculations to DPUs and incorporates customized WRAM
memory management within the DPUs to fully utilize the
DPU hardware resources. Evaluation results show that UPVSS
achieves an average speedup of 1.95x compared to the state-
of-the-art FAISS.

VI. ACKNOWLEDGEMENT

We would like to thank Prof. David Brooks and Prof. Gu-
Yeon Wei from Harvard University for their thoughtful com-
ments and insightful suggestions. This work was supported in
part by the National Science and Technology Council under
grant nos. 113-2628-E-A49-021, 113-2640-E-A49-012 and
Ministry of Education under Yushan Young Fellow Program.

6

REFERENCES

[1] A. Baumstark, M. A. Jibril, and K.-U. Sattler. Adaptive query com-
pilation with processing-in-memory. In 2023 IEEE 39th International
Conference on Data Engineering Workshops (ICDEW), pages 191–197,
2023.

[2] L.-C. Chen, C.-C. Ho, and Y.-H. Chang. Uppipe: A novel pipeline
management on in-memory processors for rna-seq quantification. In
2023 60th ACM/IEEE Design Automation Conference (DAC), 2023.

[3] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news per-
sonalization: scalable online collaborative filtering. In Proceedings of
the 16th International Conference on World Wide Web, WWW ’07,
page 271–280, New York, NY, USA, 2007. Association for Computing
Machinery.

[4] F. Devaux. The true processing in memory accelerator. In 2019 IEEE
Hot Chips 31 Symposium (HCS), pages 1–24, 2019.

[5] S. Diab, A. Nassereldine, M. Alser, J. Gómez Luna, O. Mutlu, and
I. El Hajj. A framework for high-throughput sequence alignment using
real processing-in-memory systems. Bioinformatics, 39(5):btad155, 03
2023.

[6] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-E. Mazaré,
M. Lomeli, L. Hosseini, and H. Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

[7] C. Fu, C. Xiang, C. Wang, and D. Cai. Fast approximate nearest neighbor
search with the navigating spreading-out graph. Proc. VLDB Endow.,
12(5):461–474, Jan. 2019.

[8] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang. Realm: retrieval-
augmented language model pre-training. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org,
2020.

[9] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu. Benchmarking a new paradigm: Experimental analysis
and characterization of a real processing-in-memory system. IEEE
Access, 10:52565–52608, 2022.

[10] Y. Jin, C.-F. Wu, D. Brooks, and G.-Y. Wei. s3: Increasing gpu
utilization during generative inference for higher throughput. Advances
in Neural Information Processing Systems, 36:18015–18027, 2023.

[11] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest
neighbor search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(1):117–128, 2011.

[12] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one
billion vectors: Re-rank with source coding. In 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
861–864, 2011.

[13] H. Kang, Y. Zhao, G. E. Blelloch, L. Dhulipala, Y. Gu, C. McGuffey,
and P. B. Gibbons. Pim-tree: A skew-resistant index for processing-in-
memory. Proc. VLDB Endow., 16(4):946–958, Dec. 2022.

[14] Y.-W. Kang, C.-F. Wu, Y.-H. Chang, T.-W. Kuo, and S.-Y. Ho. On
minimizing analog variation errors to resolve the scalability issue of
reram-based crossbar accelerators. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(11), 2020.

[15] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for
scalable image search. In 2009 IEEE 12th International Conference on
Computer Vision, pages 2130–2137, 2009.

[16] P. P.-H. Kung, Z. Fan, T. Zhao, Y. Liu, Z. Lai, J. Shi, Y. Wu, J. Yu,
N. Shah, and G. Venkataraman. Improving embedding-based retrieval
in friend recommendation with ann query expansion. In Proceedings
of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’24, page 2930–2934,
New York, NY, USA, 2024. Association for Computing Machinery.

[17] C. Lim, S. Lee, J. Choi, J. Lee, S. Park, H. Kim, J. Lee, and Y. Kim.
Design and analysis of a processing-in-dimm join algorithm: A case
study with upmem dimms. Proc. ACM Manag. Data, 1(2), June 2023.

[18] T.-S. Lo, C.-F. Wu, Y.-H. Chang, T.-W. Kuo, and W.-C. Wang. Space-
efficient graph data placement to save energy of reram crossbar. In
2021 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), pages 1–6. IEEE, 2021.

[19] K. Lu, H. Wang, W. Wang, and M. Kudo. Vhp: approximate nearest
neighbor search via virtual hypersphere partitioning. Proc. VLDB
Endow., 13(9):1443–1455, May 2020.

[20] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(4):824–836, 2020.

[21] J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard,
M. Dashti, R. Jodin, A. Ghiti, J. Chauzi, and A. Fedorova. A case
study of Processing-in-Memory in off-the-Shelf systems. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 117–
130. USENIX Association, July 2021.

[22] H. Ootomo, A. Naruse, C. Nolet, R. Wang, T. Feher, and Y. Wang.
Cagra: Highly parallel graph construction and approximate nearest
neighbor search for gpus. In 2024 IEEE 40th International Conference
on Data Engineering (ICDE), pages 4236–4247, 2024.

[23] OpenAI. GPT-3 Embedding. https://platform.openai.com/docs/guides/
embeddings, 2024.

[24] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object
retrieval with large vocabularies and fast spatial matching. In 2007
IEEE Conference on Computer Vision and Pattern Recognition, pages
1–8, 2007.

[25] M. A. Research. FAISS: A library for efficient similarity search and
clustering of dense vectors. https://github.com/facebookresearch/faiss,
2024.

[26] T. Shen, G. Long, X. Geng, C. Tao, Y. Lei, T. Zhou, M. Blumenstein,
and D. Jiang. Retrieval-augmented retrieval: Large language models are
strong zero-shot retriever. In L.-W. Ku, A. Martins, and V. Srikumar,
editors, Findings of the Association for Computational Linguistics: ACL
2024, pages 15933–15946, Bangkok, Thailand, Aug. 2024. Association
for Computational Linguistics.

[27] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image
descriptor matching. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8, 2008.

[28] L. Song, X. Qian, H. Li, and Y. Chen. Pipelayer: A pipelined
reram-based accelerator for deep learning. In 2017 IEEE international
symposium on high performance computer architecture (HPCA), pages
541–552. IEEE, 2017.

[29] S. J. Subramanya, Devvrit, R. Kadekodi, R. Krishaswamy, and H. V.
Simhadri. DiskANN: fast accurate billion-point nearest neighbor search
on a single node. Curran Associates Inc., Red Hook, NY, USA, 2019.

[30] C.-L. Tsai, C.-F. Wu, Y.-H. Chang, H.-W. Hu, Y.-C. Lee, H.-P. Li, and
T.-W. Kuo. A digital 3d tcam accelerator for the inference phase of
random forest. In 2023 60th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2023.

[31] UPMEM. UPMEM SDK 2024.2.0 Documentation. https://sdk.upmem.
com/2024.2.0/, 2024.

[32] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. In Proceedings of the 24rd International Conference on Very
Large Data Bases, VLDB ’98, page 194–205, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

[33] C.-F. Wu, C.-J. Wu, G.-Y. Wei, and D. Brooks. A joint management
middleware to improve training performance of deep recommendation
systems with ssds. In Proceedings of the 59th ACM/IEEE Design
Automation Conference, pages 157–162, 2022.

[34] Y. Xu, H. Liang, J. Li, S. Xu, Q. Chen, Q. Zhang, C. Li, Z. Yang,
F. Yang, Y. Yang, P. Cheng, and M. Yang. Spfresh: Incremental in-
place update for billion-scale vector search. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 545–561,
New York, NY, USA, 2023. Association for Computing Machinery.

[35] A. B. Yandex and V. Lempitsky. Efficient indexing of billion-scale
datasets of deep descriptors. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2055–2063, 2016.

[36] W. Yang, T. Li, G. Fang, and H. Wei. Pase: Postgresql ultra-
high-dimensional approximate nearest neighbor search extension. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, page 2241–2253, New York, NY,
USA, 2020. Association for Computing Machinery.

[37] B. Zheng, Z. Yue, Q. Hu, X. Yi, X. Luan, C. Xie, X. Zhou, and C. S.
Jensen. Learned probing cardinality estimation for high-dimensional
approximate nn search. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE), pages 3209–3221, 2023.

[38] B. Zheng, X. Zhao, L. Weng, N. Q. V. Hung, H. Liu, and C. S.
Jensen. Pm-lsh: A fast and accurate lsh framework for high-dimensional
approximate nn search. Proc. VLDB Endow., 13(5):643–655, Jan. 2020.

[39] Q. Zheng, Z. Wang, Z. Feng, B. Yan, Y. Cai, R. Huang, Y. Chen, C.-L.
Yang, and H. H. Li. Lattice: An adc/dac-less reram-based processing-in-
memory architecture for accelerating deep convolution neural networks.
In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2020.

7

