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ABSTRACT
Spatial learned index is becoming popular as a solution to
relieve the intense storage demands and high I/O costs of spa-
tial databases. LISA, the original and most prominent spatial
learned index structure, is tailored for HDD-resident spatial
data and comes with strict data arrangement requirements.
Given that direct SSD migration may drastically impair SSD
durability especially when page utilization is low, this work
aims to adapt this innovative index structure to SSDs to
leverage the faster performance and expand application pos-
sibilities. We propose an Adaptive Learned Index structure
for Spatial dAta on SSDs (ALISA), with mechanisms to per-
sistently monitor updated data distribution and adaptively
restructure to align with SSD access characteristics. The eval-
uation results show that ALISA can significantly extend SSD
lifespan and improve low page utilization, thereby enhancing
query performance.
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1 INTRODUCTION
Spatial indexes are widely adopted in spatial databases to ef-
ficiently manage multi-dimensional data and improve query
processing [14]. As spatial data grows in size and variety, tra-
ditional spatial indexes face challenges with high space and
time demands for indexing such large datasets [26]. LISA [18]
is the original and most notable spatial learned index struc-
ture employing learned index technology to address these
challenges. Since LISA is designed for HDD-resident spatial
data, its direct migration to SSDs can greatly reduce storage
device durability, and it becomes even worse with low page
utilization. To extend SSD lifetime by reducing the number
of flash page writes, this work aims to extend LISA to adap-
tively manage spatial key-value data with considering the
SSD’s constraint by advocating a middleware between LISA
and SSDs.

In recent years, a vast amount of location-based data has
emerged from an array of GPS-enabled devices, including

mobile devices, IoT sensors, and wearable devices [5, 12]. The
rapid generation of location-based data has spurred signifi-
cant research efforts aimed at developing optimized spatial
databases [20], which often leverage advanced hardware
and integration techniques to meet the growing demands of
contemporary applications [8, 15, 25]. Meanwhile, NAND
flash-based Solid-State Drives (SSDs) are extensively utilized
as secondary storage in aforementioned devices. Their en-
hanced features, including lightweight, small size, shock re-
sistance, portability, and faster access speeds, set them apart
from Hard Disk Drives (HDDs) [16, 21, 31], especially in mo-
bile devices and embedded systems. Many studies focusing
on integrating spatial data with SSDs [4, 13, 24, 29] have
highlighted the desire to shift the substantial space demands
of spatial databases from HDDs to SSDs.

To enhance spatial query efficiency, many studies have de-
signed elaborate spatial indexes to reduce data retrieval vol-
ume [1, 2, 11]. Nonetheless, these traditional spatial indexes
have some limitations, such as the inability to be fine-tuned
for specific datasets [23], and they can become both space
and time-consuming as data volumes grow due to the in-
creased number of nodes for storing metadata. For example,
R-tree [11] is the most renowned spatial index and widely
used in commercial database such as PostgreSQL [22] and
MySQL [9]. A larger amount of data results in a larger R-tree,
leading to more I/O costs during queries and increased space
required to store the Minimum Bounding Box, the additional
node information of the R-tree. Recent studies [7, 10, 17]
have introduced learned indexes, which employ machine
learning models to efficiently predict data indexes and re-
duce storage consumption by only storing model parame-
ters. Among them, LISA is the original and the most notable
learned index structure tailored for HDD-resident spatial
data. LISA transforms multi-dimensional spatial data into
one-dimensional ordered values and computes the neces-
sary index to minimize I/O cost. Compared with other multi-
dimensional learned index structures [23, 28], LISA stands
out by supporting update operations and being specifically
designed for disk-based databases. Relative to traditional
spatial index structures such as R-tree, LISA consumes less
storage space and reduces I/O operations when processing
range and KNN queries [18].
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Figure 1: LISA Construction Process

Meanwhile, SSDs have become a favored alternative to
HDDs across numerous applications, benefiting from their
performance improvements and cost reductions year-over-
year [19, 27, 30, 34]. We aim to integrate LISA with SSDs to
provide better spatial data management performance. Based
on our observation, the access behavior gap between LISA
and SSDsmay increase the number of written flash pages dur-
ing data updates, thus significantly impacting SSDs’ lifetime.
This gap arises because LISAmust update data in compliance
with SSDs’ out-of-place constraint while also adhering to
the neighboring-keys clustering constraint, which is a data
arrangement requirement for LISA. Consequently, LISA is
restricted to adopting Read-Modify-Write (RMW) operations
for updating data on SSDs. Since the minimum RMW granu-
larity must align with an SSD page size, the SSD reads out
and writes back a whole page even when the updated data
is smaller than the page size. This update-amplification is-
sue severely affects SSD’s lifetime, as the size of spatial data
(usually several bytes) is much smaller than an SSD page
(usually 4KB).

Tomitigate the lifetime issue, this paper proposes amiddle-
ware to extend LISA to adaptively manage spatial key-value
data while considering the SSD’s write constraint. In partic-
ular, the proposed middleware comprises three components:
(1) the adaptive update-interval model expander to minimize
the number of written pages by keeping track of update
interval, (2) the adaptive model compactor to minimize the
number of written pages while also making pages as compact
as possible, and (3) the model-aware data pinner to reduce un-
necessary writes by pinning data of the least updated pages
in the write buffer. The evaluation demonstrates that ALISA
effectively enhances the lifetime of SSDs by reducing approx-
imately 32% and 37% of pages written to the SSD compared
to LISA and R-tree, respectively. Moreover, ALISA achieves
faster execution times, completing range queries approxi-
mately 15% and 19% faster than LISA and R-tree, respectively,
attributed to the improved page utilization.
The rest of this paper is organized as follows: Section 2

presents the background, observation, and motivation. In
Section 3, we extend LISA to ALISA to enhance SSD’s lifetime

and the performance of range queries. Section 4 provides the
analysis and experimental results. Section 5 concludes this
work.

2 BACKGROUND, OBSERVATION, AND
MOTIVATION

2.1 Background
2.1.1 Learned Index Structure for Spatial Data (LISA). LISA
stands as a spatial learned index solution aimed at efficiently
indexing multi-dimensional key-value data. Unlike tradi-
tional tree-based or hash-based data structures that typi-
cally require substantial storage space to accommodate corre-
sponding data structures, LISA computes the necessary index
with low memory consumption. To achieve this, LISA trans-
forms multi-dimensional spatial data into one-dimensional
ordered values and builds a computational model mapping
these ordered values to physical addresses.

Technically, LISA comprises four parts: the grid cells, the
mapping function M, the shard prediction function SP, and
the local model for each shard. The construction process is
illustrated in Figure 1. Initially, LISA partitions the space
into grid cells following the data distribution along the axes,
ensuring each cell contains similar numbers of key-value
data, and numbers these cells for further computation. LISA
then constructs a partially monotonic mapping function,
denoted as M, which converts multi-dimensional keys into
one-dimensional mapped values. This conversion is based on
coordinates and cell IDs. Specifically, keys associated with
larger cell IDs are mapped to correspondingly larger values
compared to those linked with smaller cell IDs. Furthermore,
within a cell, keys having a larger Lebesgue measure than
the lower-left boundary are assigned greater mapped values.

Once the keys’ mapped values are calculated, LISA learns a
monotonic shard prediction function SP comprises a series of
piecewise linear functions to assign shard id to every mapped
value. The training phase ensures that keys are evenly spread
across shards, and keys within the same shard are stored on
one or more consecutive pages, whereas keys from different
shards must be stored on different pages. LISA constructs
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Figure 2: SSDs Outperforms HDDs & LISA’s Read
Penalty after Log Updates

a local model for each shard to easily position key-value
data within a shard. The local model consists of PA and PM.
PA is a list comprising addresses for all pages encompassed
within a shard. PM is a sequence of ascending mapped values
allocated to represent each page in a shard. If a shard contains
multiple pages, the placement of key-value data on each page
should follow the “neighboring-keys clustering constraint”.
It means that keys must be strictly clustered together and
located on the same page if their mapped values fall within
the range of two consecutive PM values. Take Figure 1 for
example, if𝑚𝑘 =𝑀 (𝑘) and𝑚0 <=𝑚𝑘 <𝑚1, then key k must
be stored in page on 𝐴𝑑𝑑𝑟1.

2.1.2 Solid-State Drives (SSDs). NAND flash-based SSDs
have been widely used in computer systems due to their
superior features over HDDs, including performance, porta-
bility, and energy efficiency. In the rest of the paper, we will
refer to NAND flash-based SSDs simply as SSDs. There’s a
significant difference in how SSDs and HDDs update data.
HDDs can perform in-place updates by erasing old data and
writing new data to the same location. Such an approach
in SSDs would cause considerable performance and energy
waste, given that the smallest read/write unit is a page (usu-
ally 4KB) whereas the smallest erase unit is a block, each
consisting of thousands of pages. To avoid this, data updates
in an SSD shall follow the out-of-place update constraint via
a Read-Modify-Write (RMW) procedure. That is to read out
the targeted page, update it with new data, write it back to a
new location, and then mark the original page as invalid.
However, updating only a few bytes to a flash page still

requires rewriting the entire page, which severely hurts the
lifetime because of SSDs’ limited write endurance. While
systems typically allocate some DRAM as a write buffer
to accumulate updates, this does not significantly alleviate
the lifetime issue, especially when the page accommodates
tiny data, like key-value data. Systems usually adopt the log
update [6, 19, 33] to alleviate the lifetime issues caused by
updating key-value data on SSDs. Log update accumulates
updated key-value data and writes them to some new pages
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Figure 3: LISA Value Update Flow

without doing RMW. We illustrate a toy example in the top
half inside SSD in Figure 3. Assuming to update three key-
value data, that is {𝐾𝐴1 : 𝑉𝐴1}, {𝐾𝐴2 : 𝑉𝐴2} in the page on
address 𝐴𝑑𝑑𝑟𝑖 and {𝐾𝐴4 : 𝑉𝐴4} in the page on 𝐴𝑑𝑑𝑟𝑖+1, all
these data will be written to a new page on 𝐴𝑑𝑑𝑟𝑖+2 via log
update.

2.2 Observation & Motivation
In key-value store, SSDs are configured as HDDs’ cache
or become a favored alternative to HDDs, due to its better
performance on support random accesses and a lower price
per byte year-over-year. As illustrated in Figure 2(a), running
LISA on SSDs outperforms its performance onHDDs for both
read and write operations. However, this discrepancy is not
due to LISA being specifically optimized for SSDs; rather, it
stems from the significantly faster access latency of SSDs
compared to HDDs. In fact, LISA is primarily designed for
HDD-resident spatial databases, making its design inherently
incompatible with SSDs. To satisfy both the out-of-place
update and neighboring-keys clustering constraints, LISA
cannot adopt the log update method but is constrained to
use the RMW operation.
We provide a toy example inside the SSD in Figure 3 to

explain that the log update violates the neighboring-keys
clustering constraint. The key-value data {𝐾𝐴1: 𝑉 ′

𝐴1} denotes
that the value of the first K-V item in shard A is updated to
𝑉 ′
𝐴1. LISA identifies the shard IDs of the updated data with
M and SP (step 1 ), then looks up the corresponding local
models to obtain the page addresses (step 2 ). The upper
part of the SSD illustrates the log-update method. Assum-
ing 𝑚𝐴1<𝑚𝐴2<𝑚𝐴3 and 𝑚𝐴4<𝑚𝐴5<𝑚𝐴6, this approach vio-
lates LISA’s neighboring-keys clustering constraint because
mapped value interval of new pages (𝑚𝐴1 to𝑚𝐴4) overlaps
with the intervals on 𝐴𝑑𝑑𝑟𝑖 (𝑚𝐴3), leading the address of the
new log page cannot be inserted into the local model. As a
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result, the log page can only be stored in the extra log region,
resulting in a significant read penalty due to the necessity of
traversing the entire log region in every read operation.
We demonstrate the long-term read penalty when LISA

adopts log update in Figure 2(b). For the naive log region
group, all updated data will be appended in the unified log
region. For the advanced log region group, all updated data
will be distributed in their corresponding log regions accord-
ing to shard ID. After flushing the updated data into the SSD,
our emulator executes ten thousand range queries and keeps
track of the total pages read from the SSD. The result shows
that LISA reads up to 50 times the number of pages with
naive log design and 4 times the number of pages with ad-
vanced log design, indicating that log update is not a suitable
lifetime solution for LISA. Instead of using log update, LISA
can only update values using RMW operations (step 3 ) so as
able to update new page addresses into local model (step 4 ).
In this case, all two flash pages shall be rewritten to follow
the neighboring-keys clustering constraint.
This problem grows increasingly serious when page uti-

lization drops along with the LISA’s execution. Initially, the
utilization of most flash pages in the SSD is nearly 100% right
after the LISA’s initialization, but it drops substantially after
LISA serves a series of key updates. Compared with the high
average page utilization, the SSD requires accessing more
pages while running value updates or range queries1, when
the SSD suffers from low average page utilization. Writing
data to more flash pages hurts SSD’s lifetime and reading
more pages from the SSD increases the response time for the
query. To validate the observations, we build an emulator
by integrating LISA with SSD and run the experiments on a
dataset, containing ten million of two-dimensional key-value
data. We demonstrate the evaluation results in Figure 4, on
evaluating page utilization and the lifetime and performance
impacts on SSDs. Specifically, to evaluate the lifetime impact,
our emulator randomly updates one million key-value data
and monitors the total number of page writes.
To evaluate the performance impact, our emulator exe-

cutes ten thousand of range queries and keeps track of the
total pages read from the SSD. Figure 4(a) shows the pro-
filing result of SSD’s page utilization across a series of key
updates. The x-axis shows the percentage of updated data
inside the dataset, and the y-axis demonstrates the percent-
age of utilization level (i.e., high, middle, or low utilization)
among all pages. It’s evident that even updating a few key-
value data significantly impacts page utilization. This oc-
curs because LISA divides high-utilization pages into several
low-utilization pages to accommodate newly inserted data,
preventing newly allocated pages from falling below 50%
utilization.

1Range queries work by searching all key-value data within a given range.
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Figure 4: Page Utilization Analysis & Impacts on SSDs

Figure 4(b) shows how the page utilization impacts lifetime
and performance during executing value updates and range
queries, respectively. Generally, data in key-value stores up-
dates over time; thus, the average page utilization across all
flash pages fluctuates. We snapshot our emulator (including
LISA’s local model and data layout on the SSD) when the
average page utilization reaches a predefined value and run
value updates or range queries separately. The x-axis shows
four average page utilization, and the y-axis demonstrates
the accessed pages normalized to the result while the aver-
age page utilization is 99%. LISA requires writing 1.14 times
more pages during serving value updating and reading 1.55
times more pages during executing range queries when the
page utilization drops from an initial 99% to 68%. Retraining
LISA can enhance page utilization; however, this process re-
quires data reorganization, leading to a significant increase
in write traffic inside the SSD, thereby worsening the lifetime
issue. Also, during the data reorganization, LISA must be
paused, consequently impacting the service response time.
Furthermore, as depicted in Figure 4(a), merely updating a
few key-value data can substantially reduce page utilization,
thereby diminishing the efficacy of the retraining process.
This work is strongly motivated by the need to enhance

SSD lifetime and accelerate range query performance when
running LISA on SSDs. We propose a middleware to extend
LISA to adaptively manage spatial key-value data with con-
sidering the SSD’s update constraint. Our ultimate goal is to
minimize running extra page operations while serving value
updates or range queries by keeping high page utilization.
The major technical challenge falls on how to reallocate and
compact updated key-value data into fewer pages while ad-
hering to LISA’s neighboring-keys clustering constraint and
SSD’s out-of-place update constraint.

3 ALISA: ADAPTIVE LEARNED INDEX
STRUCTURE FOR SPATIAL DATA

This section presents our Adaptive Learned Index structure
for Spatial dAta on SSDs (ALISA) to persistently monitor
updated data distribution and adaptively restructure to align
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with SSD access characteristics. Instead of flushing all pages
accommodating updated key-value data, ALISA smartly re-
allocates and compacts updated key-value data into fewer
pages via updating local models. The rationale behind this
design is that local models can be adjusted at the runtime as
long as they comply with the neighboring-keys clustering
constraint.
Technically, we design a middleware between LISA and

the SSD, and no modifications are needed for both LISA and
the FTL design inside the SSD. Section 3.1 introduces the
adaptive update-interval model expander to minimize the
number of written pages. Section 3.2 presents the adaptive
model compactor to minimize the number of written pages
while also making pages as compact as possible. Section 3.3
then introduces the model-aware data pinner to reduce un-
necessary writes by pinning data of the least updated pages
in the write buffer. For simplicity, unprocessed updated pages
are termed “unresolved pages”; once processed by our meth-
ods, we call them “resolved pages”.

3.1 Adaptive Update-Interval Model
Expander

We propose an adaptive update-interval model expander to
reduce the amount of page writes on SSDs by only flushing
those must-to-flush data from the write buffer instead of
naively flushing all pages accommodating updated data. To
conform to the neighboring-keys clustering constraint after
each flushing, the must-to-flush data includes updated data
and non-updated data sitting between any two updated data.
To identify those must-to-flush data, our design maintains an
“update interval” which denotes the range spanning from the
minimum to the maximum mapped values of updated data
across consecutive pages. Technically, our model expander
maintains the update interval for consecutive unresolved
pages and checks whether the data within this interval can
fit on one page. If it fits, our model expander reallocates these
data to a new page, marks it as invalid on the original pages,
and inserts the new page address into the local model.

We illustrate a toy example to explain our model expander
in Figure 5, assuming𝑚𝐴1<𝑚𝐴2<𝑚𝐴3 and𝑚𝐴4<𝑚𝐴5<𝑚𝐴6, the
red color denotes updated data and the update interval ex-
tends from𝑚𝐴2 to𝑚𝐴4. Since there are only three data points
within the update interval, our model expander reallocates
them onto a new page, thus decreasing the number of pages
written from two to one. The reallocation does not violate
the neighboring-keys clustering constraint because it utilizes
the “update interval” concept, which moves the entire data
range rather than relocating scattered updated data onto
a new page. Nevertheless, the model expander results in a

substantial drop in space utilization because it requires addi-
tional pages for the same data volume. Considering this, we
develop an adaptive model compactor to address this issue.
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Figure 5: Adaptive Update-Interval Model Expander

3.2 Adaptive Model Compactor
Solely using the model expander can lead to a significant
decrease in space utilization. We propose an adaptive model
compactor to increase space utilization while also reducing
the number of pages written. The model compactor assesses
whether data on 𝑛 consecutive unresolved pages can fit into
𝑛−1 pages. If feasible, the model compactor consolidates this
data onto fewer new pages, invalidates the original pages,
and modifies the local model. Here, 𝑛 can be any number not
greater than the length of local model. We limit 𝑛 to a max-
imum of three, as the model expander typically generates
three partially filled pages, and a higher 𝑛 value leads to di-
minished gains in space utilization and extended processing
duration.
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Figure 6: Adaptive Model Compactor

As shown in Figure 6, we continue from the outcome of
the previous iteration of the model expander, with data in
all three pages being updated this time. Since there are only
six data points on these two pages, our model compactor
consolidates them onto two new pages, thus decreasing the
number of pages written from three to two. Our model com-
pactor not only fixes the space issues caused by the model
expander, but it also has a chance to improve LISA’s original
low page utilization. This improvement happens because the
expander and compactor work together to rearrange how
data is stored in a shard, potentially enhancing previous
poor utilization. More details of the experimental results are
provided in Section 4.2.
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3.3 Model-aware Data Pinner
Following processing through themodel expander andmodel
compactor, there might still be unresolved pages remaining
in the buffer. We propose a model-aware data pinner to avoid
naively flushing these unresolved pages into the SSD. The
data pinner allocates a portion of buffer to pin2 or (lock)
appropriate data in DRAM. We expect these data points
will either be processed by the model expander and model
compactor in the future, or written into the SSD along with
more upcoming updated data as unresolved pages.
Technically, our data pinner maintains a model-aware

min-heap to track the number of updated data points on
unresolved pages. Each node in the min-heap contains two
elements, the identification of the unresolved page and the
number of corresponding updated data points in the write
buffer. The number of updated data points belonging to this
unresolved page serves as the key of the min-heap structure.
Once the write buffer is determined to flush into the SSD, the
model-aware data pinner will select and pin updated data of
the least updated unresolved pages to populate the pinned
area. We exhibit an example to illustrate the model-aware
pin structure in Figure 7. Our data pinner will select updated
K-V items belonging to the top-n unresolved pages in the pin
structure (𝑃𝑐 in this example). Subsequently, our data pinner
invokes the kernel function to pin K-V items (i.e.,{𝐾𝑐1: 𝑉 ′

𝑐1})
and any other non-pinned K-V items will be flushed into the
SSD. Notably, pinning too many items reduces the available
space for buffering newly updated key-value items, thereby
increasing the middleware’s management time. Based on our
testing, we suggest limiting the overall pinning size to no
more than 5% of the overall write buffer size.
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Figure 7: Model-aware Data Pinner

Algorithm 1 describes how ALISA intelligently reallocates
and compacts updated key-value data with its three com-
ponents. When the write buffer is full and determined to
flush, ALISA categorizes updated data based on their shard
IDs and retrieves corresponding local models for further
modifications. ALISA handles the updated data on a shard-
by-shard basis (𝐿𝑖𝑛𝑒 1). Initially, ALISA triggers the model
compactor to concurrently reduce the number of written
pages and improve space utilization. The model compactor
2Modern Linux kernel provides pin_user_pages() and unpin_user_pages()
function to pin and unpin user pages in the memory [3].

gathers consecutive unresolved pages and assesses if they
can be condensed into fewer pages (𝐿𝑖𝑛𝑒 4). If feasible, it
consolidates them into new pages, invalidates the original
pages, and adjusts the local model accordingly (𝐿𝑖𝑛𝑒 5). For
the remaining updated data, ALISA initiates the model ex-
pander to reduce the written pages. The model expander will
collect consecutive unresolved pages, calculate the update
interval, and assess whether the data within this interval
can fit on one page (𝐿𝑖𝑛𝑒 8). If feasible, the model expander
reallocates these data to a new page, marks it as invalid on
the original pages, and inserts the new page address into the
local model (𝐿𝑖𝑛𝑒 9). Finally, ALISA allocates a portion of
the write buffer as a pinned area and utilizes the min-heap
to pin selected updated data in the write buffer (𝐿𝑖𝑛𝑒 11, 12).

Algorithm 1: ALISA Update Processing
Input: 𝐿𝑀 = {local model 𝑙𝑚 | 𝑙𝑚.𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑐𝑛𝑡 () > 0 }

1 for 𝑙𝑚 ∈ LM do
/* 1. Model Compactor */

2 for 𝑝𝑎𝑔𝑒 𝑃 ∈ lm.PA do
3 𝑃𝑠 = 𝑃 𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑝𝑎𝑔𝑒𝑠;
4 if 𝑃𝑠.𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 () & 𝑃𝑠.𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑏𝑙𝑒 () then
5 𝑙𝑚.𝑐𝑜𝑚𝑝𝑎𝑐𝑡 (𝑃𝑠);

/* 2. Model Expander */

6 for 𝑝𝑎𝑔𝑒 𝑃 ∈ lm.PA do
7 𝑃𝑠 = 𝑃 𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑝𝑎𝑔𝑒𝑠;
8 if 𝑃𝑠.𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 () & 𝑃𝑠.𝑒𝑥𝑝𝑎𝑛𝑑𝑖𝑏𝑙𝑒 () then
9 𝑙𝑚.𝑒𝑥𝑝𝑎𝑛𝑑 (𝑃𝑠);

/* 3. Data Pinner */

10 𝑚𝑖𝑛_ℎ𝑒𝑎𝑝 = ℎ𝑒𝑎𝑝𝑖 𝑓 𝑦(𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑝𝑎𝑔𝑒𝑠);
11 while pinned area is not full do
12 𝑝𝑜𝑝 (𝑚𝑖𝑛_ℎ𝑒𝑎𝑝) 𝑎𝑛𝑑 𝑝𝑖𝑛 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑑𝑎𝑡𝑎;

4 PERFORMANCE EVALUATION
4.1 Performance Metrics and Evaluation

Setup
To validate the effectiveness of our design, we build an emu-
lator by integrating ALISA with SSD, where ALISA is imple-
mented by merging LISA with our middleware. We evaluate
the effectiveness of the proposed middleware for improv-
ing the lifetime of SSDs and page utilization of spatial data-
base during value updates, which reduces the I/O costs of
subsequent range queries. In particular, we evaluate above
metrics by comparing the proposed ALISA with two base-
line approaches, i.e., original LISA and the most popular
spatial index R-tree. To obey the neighboring-keys cluster-
ing constraint, LISA can only use RMW operations when
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updating data. Given that most computer systems employ
write buffers to aggregate and optimize write operations, a
set of value-update operations is buffered in DRAM and then
batch-written to SSDs for all approaches.
There are four synthetic datasets and two real world

datasets in our experiment. We developed four synthetic
datasets, formed by a combination of two types of distri-
butions - uniform and Zipf [32] - and two sizes – small (S)
and large (L) containing twenty million and sixty million
two-dimensional key-value items respectively. We collected
two real world datasets - Texas and California building foot-
prints released by Microsoft, each containing 10,677,005 and
11,528,930multipolygons respectively.We simplified themul-
tipolygons to point type by calculating the means of latitude
and longitude. To simulate system usage over time, for each
dataset, we randomly select half of data to form the initial
dataset I for building LISA and R-tree. The remaining half of
data constitutes dataset E to be inserted into the databases.
From the union of I and E, we randomly select half of data
to be deleted. A portion of memory is configured as a write
buffer. In our experiment, we set 5% of the size of each dataset
as the write buffer size. After initialization, our emulator uni-
formly selects and updates the values of the whole dataset
with the configured write buffer and logs the total number of
pages written. After updating, we issue and process the same
set of ten thousand range queries using all approaches. Each
side of every query rectangle is assigned a random length,
ranging from zero to 25% of the corresponding axis’s length.
In our testbed, we run the emulator on the machine with
Intel Core i7-12700 CPU and 128GB of DRAM. The operating
system is Ubuntu 22.04.1 and the Linux kernel is 6.2.0-33-
generic. We use“FIO” (version 3.28) to send requests to the
SSD for measuring the read time and write time.

4.2 Evaluation Results
4.2.1 Evaluation on Lifetime and Analysis under Different
Page Utilizations. Figure 8 provides the results of the SSD
lifetime and detailed lifetime analysis with different page
utilizations, under running ALISA against LISA and R-tree.
Figure 8(a) displays the number of written pages during value
updates, where the x-axis indicates six datasets and the y-
axis represents the normalized written pages compared to
ALISA during these updates. The results show that ALISA
can save around 32% pages written to the SSD relative to
LISA and 37% pages written compared to R-tree. The reason
is that ALISA continuously monitors the data distribution in
the write buffer and minimizes the pages written with the
model expander and the model compactor. That is, ALISA
determines if the key-value items within the update interval
can be merged onto a single page, or if multiple unresolved
pages can be condensed into fewer pages to reduce the num-
ber of written pages. Furthermore, the model-aware data
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Figure 8: Evaluation on Lifetime and Detailed Lifetime
Analysis under Different Page Utilizations.

pinner contributes to pin the least updated unresolved pages
in the write buffer, aiming to boost the frequency of such
instances in the future.

Figure 8(b) provides the results of the SSD lifetime analy-
sis under different page utilizations. During the experiment
databases are constructed, the average page utilization across
all flash pages fluctuates. We snapshot our emulator when
the average page utilization reaches a predefined value and
update the values of the entire dataset to observe the life-
time improvement. To be specific, we take small size uniform
dataset and insert data of dataset E into initial dataset I to
reach the certain page utilization. Figure 8(b) displays the
number of written pages during value updates, where the
x-axis indicates different page utilizations and the y-axis
represents the normalized written pages compared to AL-
ISA during these updates. The results show that ALISA can
save 32%∼44% pages written to the SSD relative to LISA and
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Figure 9: Evaluation on Latency.

37%∼46% pages written compared to R-tree. The findings
indicate that ALISA consistently improves lifespan across
different levels of page utilization. Specifically, it thrives in
scenarios of low page utilization, where the activation of
the model expander and model compactor becomes more
probable.

4.2.2 Evaluation on Latency. We then show a detailed per-
formance evaluation in Figure 9. Figure 9(a) demonstrates
the overall latency for mixing value updates operations and
further ten thousand range queries, under running ALISA
against LISA and R-tree. The method overhead is also mea-
sured and included in ALISA overall running time. The x-
axis indicates six datasets and the y-axis represents the nor-
malized latency compared to ALISA. The results show that
R-tree exhibits 14%∼27% longer running time and LISA ex-
hibits 8%∼14% longer running time compared to ALISA. Fig-
ure 9(b) displays the write latency for value updates opera-
tions, where the x-axis indicates six datasets and the y-axis
represents the normalized write latency compared to ALISA.
The results show that R-tree exhibits up to 60% longer write
time and LISA exhibits up to 47% longer write time compared
to ALISA, attributed to ALISA’s efficiency in reducing the
total number of written pages. Figure 9(c) shows the query
latency for ten thousand range queries, where the x-axis in-
dicates six datasets and the y-axis represents the normalized
query latency compared to ALISA. The results show that R-
tree exhibits up to 23% longer query time and LISA exhibits
up to 19% longer query time compared to ALISA. The results
imply that running ALISA can enhance page utilization so
as to reduce accessed pages during range queries. In fact,
the average page utilization of LISA and R-tree remains at
approximately 68% and 65% after value updates, while AL-
ISA’s average page utilization improves from 68% to around
80% thanks to the model compactor. This result proves that
the system can achieve good space utilization and efficiency

without the need for retraining the models, which seriously
delays the response time and wears out SSDs cells earlier.

5 CONCLUSION
Aiming to enhance SSD lifetime and accelerate range query
performance when running LISA on SSDs, we propose a
middleware to extend LISA to ALISA to adaptively manage
spatial key-value data with considering the SSD’s update con-
straint. Our middleware comprises three main components:
an adaptive update-interval model expander to minimize the
number of written pages by keeping track of update inter-
vals, an adaptive model compactor to minimize the number
of written pages while also making pages as compact as pos-
sible, and a model-aware data pinner to reduce unnecessary
writes by pinning data of the least updated pages in the write
buffer. The evaluation demonstrates that ALISA effectively
enhances the lifetime of SSDs by reducing 32%∼44% and
37%∼46% of pages written to the SSD compared to LISA and
R-tree, respectively. Moreover, ALISA achieves faster exe-
cution times, completing range queries approximately 15%
and 19% faster than LISA and R-tree, respectively, attributed
to improved page utilization. Specifically, the average page
utilization of LISA and R-tree remains at approximately 68%
and 65% after value updates, while ALISA’s average page
utilization improves from 68% to around 80%.
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