
Accelerating Random Forest
on Memory-Constrained Devices

Through Data Storage Optimization
Cam�elia Slimani , Chun-Feng Wu ,Member, IEEE, St�ephane Rubini ,

Yuan-Hao Chang , Senior Member, IEEE, and Jalil Boukhobza , Senior Member, IEEE

Abstract—Random forests is a widely used classification algorithm. It consists of a set of decision trees each of which is a classifier

built on the basis of a random subset of the training data-set. In an environment where the memory work-space is low in comparison to

the data-set size, when training a decision tree, a large proportion of the execution time is related to I/O operations. These are caused

by data blocks transfers between the storage device and the memory work-space (in both directions). Our analysis of random forests

training algorithms showed that there are two major issues : (1) Block Under-utilization: data blocks are poorly used when loaded into

memory and have to be reloaded multiple times, meaning that the algorithm exhibits a poor spatial locality; (2) Data Over-read: the

data-set is supposed to be fully loaded in memory whereas a large proportion of data are not effectively useful when building a decision

tree. Our proposed solution is structured to address these two issues. First, we propose to reorganize the data-set in such a way to

enhance spatial locality and second, to remove the assumption that the data-set is entirely loaded into memory and access data only

when effectively needed. Our experiments show that this method made it possible to reduce random forest building time by 51 to 95%

in comparison to a state-of-the-art method.

Index Terms—Random forests, memory hierarchy, I/O accesses reduction, embedded systems

Ç

1 INTRODUCTION

ACCORDING to the International Data Corporation, the vol-
ume of data created between 2020 and 2024 will surpass

the one created over the last 30 years [1]. This is mainly due
to the billions of end-point devices used in transportation,
medicine or entertainment [2]. These devices collect and ana-
lyze huge amounts of data to extract meaningful informa-
tion [3]. Analysis are traditionally performed on the cloud to
exploit high computation power. However, this requires to
send collected data on the cloud, that is exposing them to
security threats, when applications deal with medical [4],
industrial [5] or transportation data [6], and increasing the
network traffic and energy consumption [7]. According
to [8], 70% of energy consumption of an embedded device is
spent on communication. Since, these devices may be

battery-backed, it may be cheaper to process data than to
send it [8].

While this is not considered as an issue for several appli-
cations, it can cause serious problems for critical data
applications.

Processing data directly on embedded devices can be a
solution for such an issue. Nevertheless, this solution strug-
gles from the limitation in size of the main memory. In fact,
memory capacity can hardly scale as fast as the volume of
data to process [9]. We cite the RaspBerry Pi Zero as an exam-
ple of embedded device used to perform several learning
tasks [10], [11]. To overcome these constraints, some studies
propose to trade accuracy for lighter models [12], [13]. How-
ever, some applications require high accuracy such as health-
care applications [14], industry 4.0 [15] and autonomous
driving [8]. Thus, our objective in this study is to train models
that are as accurate as the originalmethods at a lower cost.

One of the wide spread data analysis algorithms is classifi-
cation. The objective is to assign a category to a recorded infor-
mation according to observed features [3]. A classification
model is trained on a learning set (data-set) of elements char-
acterized by features and labeled with their real classes [3].
Among the classification algorithms, Random Forests (RF) [16]
is a powerful and widely used one. It individually trains a set
of decision trees, each of which is trained on a subset of ele-
ments called a bootstrap. A decision tree is a set of conditions
based on the feature values which group elements that are in
the same class together. Thus, the decision tree building pro-
cess consists in identifying the best features thatmake it possi-
ble to obtain this grouping [17]. This process is performed
iteratively by trying different sets of features.

� Cam�elia Slimani and St�ephane Rubini are with the University of Brest,
Lab-STICC, CNRS, F-29200 Brest, France. E-mail: {camelia.slimani,
stephane.rubini}@univ-brest.fr.

� Chun-Feng Wu is with the National Yang Ming Chiao Tung University.
E-mail: cfwu417@cs.nycu.edu.tw.

� Yuan-Hao Chang is with the Institute of Information Science, Academia
Sinica, Taipei 11529, Taiwan. E-mail: johnson@iis.sinica.edu.tw.

� Jalil Boukhobza is with ENSTA Bretagne, Lab-STICC, CNRS, F-29200
Brest, France. E-mail: jalil.boukhobza@ensta-bretagne.fr.

Manuscript received 22 December 2021; revised 27 September 2022; accepted
12 October 2022. Date of publication 19 October 2022; date of current version
10 May 2023.
This work was supported by Bretagne region, France.
(Corresponding author: Cam�elia Slimani.)
Recommended for acceptance by R. Marculescu.
Digital Object Identifier no. 10.1109/TC.2022.3215898

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023 1595

0018-9340 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1484-5744
https://orcid.org/0000-0003-1484-5744
https://orcid.org/0000-0003-1484-5744
https://orcid.org/0000-0003-1484-5744
https://orcid.org/0000-0003-1484-5744
https://orcid.org/0000-0002-6367-0517
https://orcid.org/0000-0002-6367-0517
https://orcid.org/0000-0002-6367-0517
https://orcid.org/0000-0002-6367-0517
https://orcid.org/0000-0002-6367-0517
https://orcid.org/0000-0002-3206-0310
https://orcid.org/0000-0002-3206-0310
https://orcid.org/0000-0002-3206-0310
https://orcid.org/0000-0002-3206-0310
https://orcid.org/0000-0002-3206-0310
https://orcid.org/0000-0002-1282-2111
https://orcid.org/0000-0002-1282-2111
https://orcid.org/0000-0002-1282-2111
https://orcid.org/0000-0002-1282-2111
https://orcid.org/0000-0002-1282-2111
https://orcid.org/0000-0002-2194-4006
https://orcid.org/0000-0002-2194-4006
https://orcid.org/0000-0002-2194-4006
https://orcid.org/0000-0002-2194-4006
https://orcid.org/0000-0002-2194-4006
mailto:camelia.slimani@univ-brest.fr
mailto:stephane.rubini@univ-brest.fr
mailto:cfwu417@cs.nycu.edu.tw
mailto:johnson@iis.sinica.edu.tw
mailto:jalil.boukhobza@ensta-bretagne.fr

During the tree building process, most RF implementa-
tions assume that the data-set can entirely fit into the main
memory. However, embedded systems, which are usually
resource-constrained, cannot easily meet this assumption.
Practically, the size of the data-set is usually larger than the
memory capacity, and thus, significant data movements
may take place between memory and storage devices. Our
experiments measured that building a decision tree with a
memory work-space 8 times smaller than the size of the
data-set is 25 times slower than the case where the data-set
fits entirely into the memory [18]. We analyzed the tradi-
tional RF algorithm as proposed in [16] and identified two
main issues that cause the increase of data movements
between memory and storage when the memory pressure
increases. (1) Block Under-Utilization: A given data-set block
is accessed on multiple steps of the decision tree building
process, which makes the algorithm present a poor spatial
locality. As a consequence, the same data block is loaded
several times throughout the whole algorithm execution. (2)
Data over-read: A given data-set block may contain several
data elements that are not part of the bootstrap, they are
thus uselessly moved back and forth from/to the memory
to storage, which highly increases the volume of I/O
operations.

To address these issues, we propose an RF building algo-
rithm based on two principles:

1) Enhancing spatial locality by data-set reorganization:
This solution consists in reorganizing the data-set on
the storage device in a way that data that are likely
to be accessed together during the tree building pro-
cess (on the same decision tree nodes) are stored in
neighboring blocks. This idea is motivated by a ran-
dom forest decision trees property that we observed
experimentally on a set of data-sets. In fact, if a pair
of data elements are successively accessed during
one decision tree building, they have a high proba-
bility to be successively accessed for the building of
other decision trees. Thus, those data elements can
be stored in neighboring blocks.

2) Accessing required data elements on-demand: Instead of
loading the whole data-set before starting to build a
decision tree, we propose to take into account the
available memory work-space to only load the
effectively required data and adapt the decision
tree building process accordingly. We identified
three specific cases according to the memory work-
space available: (1) loading the whole data to build
a full sub-tree; (2) loading the necessary data to
build only one node of the sub-tree; or (3) subdivid-
ing the node’s data elements into chunks that can fit
in memory and iterate over their elements sepa-
rately to test splitting features. In the latter case, the
results obtained from each the chunk processing are
aggregated.

The proposed optimizations were tested by modifying
the framework Ranger [19]. This framework already
implements some memory optimizations for random for-
ests. A comparison of the proposed method with the orig-
inal version of Ranger showed that the proposed method
(that combines the two optimizations) reduces the RF

building time by up to 95% for high memory constraints,
and this without alteration of algorithm accuracy. The
two optimizations individually evaluated gave the follow-
ing results: The data-set reorganization reduces the execu-
tion time by 35 to 74% and on-demand data-access
reduces it by 20 to 77%.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief background about random forests. In
Section 3, we motivate our study. The proposed method is
detailed in Section 4, and we evaluate it in Section 5. Sec-
tion 6 gives an overview of state-of-the-art methods and a
positioning of our proposal. Finally, Section 7 concludes
this work and gives some perspectives.

2 BACKGROUND

In this section, we start by describing the Random Forest
building algorithm, then, we briefly describe swap mecha-
nism that is responsible for I/Os in RF algorithm.

2.1 Random Forest Building Algorithm

In this Section, we introduce RF and the decision tree build-
ing process. Table 1 gives the notations used.

RF is a supervised machine learning algorithm used for
classification and regression [17]. It is composed of T deci-
sion trees. The input of the learning phase of an RF is a data-
set, that is a set of N observed data elements characterized
by d features and labeled with their real classes. Each deci-
sion tree is trained on a subset of this data-set according to
the method explained in the next section. The objective of a
decision tree is to predict the class of an element knowing
its observed features. RF builds a set of decision trees to limit
the prediction error. The final predicted class of the ele-
ments is the predominant class among the predicted classes
of the T trees of the forest. In what follows, we focus on
binary decision trees, where the number of children nodes
of a node is 2.

A binary decision tree is a tree-like graph where each
node represents a Boolean condition that depends on a fea-
ture of the learning set. This Boolean condition allows to
split the elements of the learning set into two subsets: a sub-
set of elements for which the condition is ’true’; and another
one for which the condition is ’false’. The topmost node of
the tree is called the root node. All the elements of the learn-
ing set are assigned to this node at the beginning of the deci-
sion tree building process. The bottom nodes of a tree,
called leaf nodes, are pure meaning that all elements assigned

TABLE 1
Notation Table

Notation Description

D Data-set
N Number of elements of the data-set
t Number of decision trees
M Memory work-space size
B Number of elements in an I/O block
d Number of features of an element
F Set of features to be tested
SðiÞ Memory size occupied by i features
R Execution time reduction

1596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

to them are from the same class. Thus, the objective of the
training process is to find the sequences of conditions that
allow to obtain pure nodes.

A decision tree is built according to the bagging Algo-
rithm [16]. To illustrate this process, we use the following
example. We assume a data-set, given in Table 2, composed
of 8 elements (labeled from A to H) characterized by 4 fea-
tures ff1; f2; f3; f4g. Fig. 1 shows the steps of building a deci-
sion tree on the basis of this data-set:

1) Bootstrap creation (step 1): A subset of the data-set,
called bootstrap, is formed by a random sampling
with replacement (i.e., each element can be sam-
pled multiple times). Note that the overall num-
ber of samples is N which equals the number of
elements in the data-set. Elements of the bootstrap
are assigned to the root node. Fig. 1 shows the
sampled bootstrap, and its assignment to the root
node N0.

2) Split trial (step 2): The second step consists of splitting
the elements of the bootstrap according to boolean
conditions based on a random subset F of features.
Once F is formed, the elements of the bootstrap are
distributed according to their value for each feature,
resulting in jF j potential trees. In Fig. 1, the sampled
features are f1 and f4. Elements of the bootstrap are
distributed according to each of these features result-
ing in two possible trees.

3) Effective split (step 3): This step consists of choosing
the best splitting feature among the previous subset
F , that is the one that allows to group the most ele-
ments of the same class together. Then, the node is
effectively split according to the best feature. In
Fig. 1, f1 is chosen since it already gives a pure leaf
node, which is N1, as all the elements assigned to it
are from the same class.

4) Step 1, 2 and 3 are repeated with the resulting nodes
if they do not satisfy a stopping condition that is the-
oretically the pureness, and a maximum tree depth
or a minimum number of elements per node in
practice.

For the sake of simplicity, in the given example, the fea-
tures of the used data-set take binary values. In more gen-
eral cases, the features take real values. Thus, split trials
(step 2) include an additional step which consists in choos-
ing the best split value for each tested feature. It should be
noted that the general case is taken into consideration in the
proposed mechanism in the same way Ranger Framework
does [19].

2.2 Swap Mechanism and I/Os

Swapping is an operating system mechanism that consists
in a backup on disk for memory pages. This mechanism is
transparent to programs [20]. Swap space is implemented
as a partition or a file in the operating system. Page move-
ments between the main memory and the secondary storage
are triggered by Page Frame Reclaiming Algorithm (PRFA),
which objective is to free User mode page frames for a
future use [20].

The Swapping mechanism can considerably slow down
the execution of an application when the available memory
workspace is not sufficient for the application. This slow-
down is correlated to the performance difference between
technologies used to respectively implement main memory
and secondary storage. In what follows, we will describe
the impact of this mechanism when building a random
forest.

3 MOTIVATION

In this section, we highlight the main issues when building
an RF. To do so, we illustrate the I/O operations that occur
using a motivational example. Then we measure the pro-
portion of I/O time in comparison to the overall decision
tree building time, using experiments on real data-sets.

3.1 Motivational Example

We assume a simplified system composed of a main mem-
ory work-space and a secondary storage space1. The Bag-
ging algorithm assumes that the data-set fits in memory;
this means that it is read once and kept in memory during
all the processing2. We use the example presented in Table 2.
We are interested in I/Os that occur during the step 2 of the
bagging algorithm. For simplicity, we suppose a memory
work-space that can hold four values of features (M ¼ 4)
and an I/O block of two feature values (B ¼ 2).

Table 3 shows the following information: the labels of
elements that need to be accessed when trying to split nodes

TABLE 2
Data-Set Example

Fig. 1. Bagging algorithm illustration.

1. Data organization to optimize the processor cache accesses is out
of the scope of this paper; we only focus on the number of I/O opera-
tions since they are several order of magnitudes slower than memory
operations and they significantly slow down the decision tree building.

2. Data are loaded per column for an optimal feature value
extraction [19]

SLIMANI ETAL.: ACCELERATING RANDOM FORESTON MEMORY-CONSTRAINED DEVICES THROUGH DATA STORAGE OPTIMIZATION 1597

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

of Fig. 1 according to testing features, the accessed storage
blocks (as numbered in Table 2) and the average percentage
of used data for each node. The first line of the table shows
for example, the accesses resulting from N0 division.
The features to be tested are f1 and f4. When trying the divi-
sion using feature f1, the blocks that need to be accessed are
those containing values of features f1 of elements of node
N0 (ð1Þ; ð2Þ; ð3Þ; ð4Þ), and blocks containing values of the
effective class (ð17Þ; ð18Þ; ð19Þ; ð20Þ).

We observe the following issues:

1) Low spatial locality: In the given example, to process
node N0, all the blocks that contain data values of
the features to be tested are accessed and all of them
are 50% effectively used. The elements that are
needed to process a node are distributed on multiple
data blocks which are poorly exploited (50%). Thus,
the original data-set organization exhibits a low spa-
tial locality.

2) Useless data movement: Since the data-set is loaded
into memory before starting to build the decision
trees, the elements that are not part of the bootstrap
are distributed among data blocks that are moved
from secondary storage to main memory when the
useful data are needed. In the given example, when
trying to split node N0, the block (2) that contains the
f1 feature of element C is moved into the main mem-
ory. Yet, this block also contains the feature f1 of ele-
ment D although it is not needed. This makes the
average percentage of used data per block 50% for
several nodes in this example as shown in Table 3.

3) Multiple accesses to the same blocks for an individ-
ual node: The blocks that contain the class data are
accessed as many times as features to be tested (i.e.,

jF j times). In the given example, each class block is
moved to the main memory twice, since there are
two features to be tested. This behavior increases
even more the the number of I/O operations.

3.2 Experimental Measurement of I/O Time

For this experiment, the data-set Wearable which volume is
4.58 MB (see Table 7) was used. The evaluation platform
was the same as the one used in the evaluation part (see Sec-
tion 5.1.2). The Random Forest used in this experiment is
Ranger Framework described in Section 5.1. We used differ-
ent memory configurations expressed by the proportion of
data-set volume N over the volume of available memory
work-spaceM, that isN=M.

Fig. 2 shows the obtained results. We observe that when
the proportion N=M is lower than 0.5, the system spends
less than 20% of the time performing I/O operations. This
proportion rapidly grows to reach 88% when N=M is equal
to 8. The same phenomena is observed for execution time.
We observe that when N=M ¼ 0:75, or N=M ¼ 1, the I/O
time proportion is still high despite the fact that the data-set
can fit into memory. This is because several data structures
(such as indexes) must be maintained in memory while
building decision trees.

For instance, building a tree when N=M ¼ 8 is almost 25
times slower than building it when N=M ¼ 0:25. As dis-
cussed earlier, this performance drop is mainly due to use-
less I/Os and a low spatial locality on memory accesses.

4 CONTRIBUTION

In this section, we present an adaptive RF algorithm whose
objective is to reduce I/O operations for memory con-
strained environments. We start by giving an overview of
the method, then we describe in detail the principles we
used to address the issues shown in the previous section.

4.1 Overview of the Method

As shown in the previous section, the original RF algorithm
generates a substantial amount of I/O operations when the
memory work-space is limited. The proposed method is
structured around two optimizations to address above men-
tioned issues3. Fig. 3 gives an overview of the method
described hereafter.

TABLE 3
I/O Access Pattern for Splitting Each Node

Node Elements Feature Accessed blocks Average usage per block

N0 fA;A;B;C;C; E; F;Hg f1 (1),(17),(2),(18),(3),(19),(4),(20)
f4 (13),(17),(14),(18),(15),(19),(16),(20) 75%

N1 fA;A;C; C; F;Hg f3 (1),(17),(2),(18),(3),(19),(4),(20)
f4 (13),(17),(14),(18),(15),(19),(16),(20) 50%

N2 fB;Eg / (2),(18),(3),(19) 50%
N3 fA;A;C; C; F;Hg / (1),(17),(2),(18),(4),(20) 50%
N4 fFg / (3),(19),(15),(19) 50%

Fig. 2. Execution time and I/O time % according to N/M.

3. No prefetching and eviction algorithms have been designed. The
default ones in Linux page cache were used. We achieved no updates
at the operating system level, only the application part was upgraded.

1598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

1) Data Reorganization: The objective is to enhance spa-
tial locality of the algorithm. To do so, we propose to
reorganize the data-set blocks in a way that each of
them contains elements that are likely to be accessed
during the split of the same node, before building
the RF decision trees. We decompose the data reorga-
nization into two functions:
a) Data Locality Learner: The objective of this module

is to determine groups of data elements that are
likely to be successively accessed. The learning
method is detailed in the next section.

b) Data-set Writer: Each group of elements that are
likely to be accessed together, are stored (writ-
ten) in neighbor blocks on the storage device. At
the end of this process, we obtain a copy of the
data-set stored in a reorganized way on the stor-
age device. This reorganized data-set is used to
build the RF decision trees. The original data-set
copy can be discarded or kept according to appli-
cation needs. Rewriting the whole data-set may
seem costly, but as it is read several time, this
operation is profitable.

2) On-demand Data Access Decision Tree Builder: We
decompose this second optimization into three
modules:
a) Decision Tree Building Module: This module effec-

tively performs the decision tree building steps
of the bagging algorithm. The method does not
prefetch all the data into the memory work-space
at the beginning of the RF building. Rather, it per-
forms on-demand data loading according to the
memory space available. To do so, it relies on
two other modules: the memory work-space
monitor and the data loader.

b) Memory Work-Space Monitor: This module com-
pares the volume N of data to process for a given
node and the available memory work-space M.

It selects between three scenarios related to the
available memory: all node’s data can fit in mem-
ory (scenario 1), memory can hold all values of
features to be tested in the split trial step but can-
not hold all the node’s data (scenario 2), and
memory cannot hold all the values of features to
be tested (scenario 3).

c) Data Loader Module:It smartly loads the useful data
according to the scenario selected by the memory
work-space monitor. Once data are loaded, they
are processed by the decision tree building mod-
ule to complete the split trial step. This module
also forms an index of the data elements locations
on the data-set file before starting decision tree
building. This is done to easily locate useful data
without reading them sequentially during data
loading. The index is kept in memory during deci-
sion tree building. In terms of memory overhead,
the proportion of index size as compared to data-
set size equals 1=d. This means that the size of the
index becomes negligible as compared to the data-
set size when the dimensions (d) of the data-set
grows. As an example, for the real data-sets con-
sidered in the paper, the lowest and highest
dimension of the used real data-sets are respec-
tively 8 and 299 (see Table 2), which makes the
proportion of index size as compared to data-set
size vary between 0.3% and 12.5%.

Note that both optimizations can individually reduce the
volume of I/O operations. In what follows, we detail each
one of them.

4.2 Enhancing Spatial Locality by Data
Reorganization

Data reorganization is based on the observation that deci-
sion trees of the same RF exhibit some similarity in the way

Fig. 3. Overview of the method.

SLIMANI ETAL.: ACCELERATING RANDOM FORESTON MEMORY-CONSTRAINED DEVICES THROUGH DATA STORAGE OPTIMIZATION 1599

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

they classify the elements. In what follows, we detail what
similarity between decision trees is, and how did we exploit
this property to enhance spatial locality.

4.2.1 Similarity Between RF Decision Trees

We will show that, in an RF, if a pair of data elements are
classified in the same leaf node in one tree, they are likely to
be classified together in another tree. We first formalize this
property and evaluate its relevance.

Decision Trees Similarity. We assume a bootstrap that con-
tains N elements. T1 and T2 are two decision trees built on
the basis of the selected bootstrap. Each decision tree results
in a set of leaf nodes. A leaf node groups elements of the
bootstrap that share the same features. The union of all
groups of elements (leaf nodes) gives the original bootstrap,
and the intersection between a given pair of groups is
empty. Thus, a decision tree results in a clustering of the
bootstrap, where each group of elements affected to a leaf
node represents a cluster. Let us assume that tree T1 (resp.
T2) gives the clustering P1 (resp. P2). To know whether a
pair of elements classified in the same leaf nodes of a deci-
sion tree are likely to be classified together in another one,
we can compare the similarity of obtained clusterings P1

and P2.
In the literature, several metrics exist that evaluate simi-

larity between clusters [21]. We relied on the Adjusted Rand
Index (ARI), which is a widely used one. It is calculated
from the contingency matrix that is given in Table 4, where
nij ¼ jXi \ Yjj is the number of observations that are com-
mon toXi and Yj. The formula for ARI index [22] is :

ARI ¼
N
2

� � �Pr;s
i;j

nij
2

� �
�Pr

i
ai
2

� � �Ps
j

bj
2

� �

1=2 � N
2

� � � Pr
i

ai
2

� �þPs
j

bj
2

� �h i
�Pr

i
ai
2

� � �Ps
j

bj
2

� �

(1)

Its value ranges between -1 and 1; a high ARI value indi-
cates a high similarity.

Experimental Measurement of the ARI. In order to check
whether this property is relevant, we measured the ARI

index of the clusterings obtained using two decision trees,
with multiple real data-sets picked from UCI Data-set Repos-
itory [23]. Table 5 shows the obtained ARI measures. The
bootstraps used to build the two decision trees were formed
by sampling the data-set without replacement, thus, the
bootstraps contain all the data-set. We rely on the fact that
the bootstrap samples have 63% of observations in com-
mon [24] and assume that the similarity property, if
checked, would be verified in case of bootstraps that are dif-
ferent to some extent.

The results show that most of the ARI indexes range
between 0.12 and 0.42 (except for Poker data-set). In order
to tell if these values reflect significant similarity between
the clusterings obtained using two decision trees, we com-
pared them to state-of-the-art studies [22], [25]. These stud-
ies compare the similarity between clusetrings obtained by
popular algorithms and the ground-truth clusters, and the
ARI indexes range between 0.07 and 0.87[22], 0.05 and 0.8
[25]. Thus we admit that the similarities between decision
trees are satisfactory enough.

In addition, we have generated two random cluster-
ings of 50,000 data elements. The process to generate
them consists of generating a data-set of 50,000 elements
and randomly assigning each of them to a cluster. We did
the assignment two times in order to generate two ran-
dom clusterings. When measuring the ARI index of these
two clusterings, the result is 0.0009, which is a few orders
of magnitude lower than the indexes obtained from the
above mentioned data-set elements clustering using two
decision trees.

4.2.2 Data-Set Reorganization Method

Our approach is to re-organize data-set blocks in such a way
that each of them contains elements that are likely to be
accessed during the split of the same node. To do so, we
take advantage of the property discussed in the previous
section. In fact, since the probability of similarity between
leaf nodes is high, we use a decision tree trained on this
data-set to extract information about elements clustering,
and then exploit this information to reorganize the data-set
before building the remaining decision trees. This induces
an additional complete data-set write operation on the stor-
age device, but it is profitable in view of the several trees to
be built. For instance, the default number of trees in
Ranger [19] and Scikit-learn [26] frameworks is 100. The steps
are explained hereafter.

1) Build the T0 Tree: This step is performed by the Data
Locality Learner shown in Fig. 3. The objective of this
first step is to build a decision tree that would allow to
get a clustering of data-sets elements, where tree leaf
nodes represent the clusters. In order to get a cluster-
ing of all data-set elements and not only the bootstrap,
the decision tree T0 (and only this one) is built on the
basis of the whole data-set. As a consequence, the
decision tree T0 is deeper (more elements), thus
slower to build, than ordinary decision trees. In addi-
tion, it is more subject to over-fitting. Thus, in our
method, T0 is a ”disposable” tree used to cluster data-
set elements; it is not saved in the RF decision trees
that are used for the inference step, so as not to change
the final generated forest. Our strategy accelerates the
forest building and does not change it.

TABLE 4
Table of Contingency

X/Y Y1 Y2 . . . Ys Sum

X1 n11 n12 . . . n1s a1
X2 n21 n22 . . . n2s a2
.
Xr nr1 nr2 . . . nrs a2
Sum b1 b2 . . . bs

TABLE 5
Obtained ARI Measures

Data-set Wearable Adult Covertype Ecoli Wine Heart Failure Poker

ARI 0.27 0.26 0.12 0.37 0.42 0.33 0.034

1600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

2) Re-write the data-set on the storage device: Once the
decision tree T0 obtained, we dispose of the clus-
tering of all the data-set elements. The information
is used to rewrite the whole file in the storage
device (we assume there is space on the storage
device for such a write operation). A new data-set
is written and that is organized in a way that data
elements within a block belong to the same cluster
(leaf node). This way, elements of a block are likely
to be accessed altogether during the building of the
other trees. If the size of a block cannot contain all
the elements of a cluster, they are stored on multi-
ple ones. The data-set was written sequentially to
reduce the SSD wear-out issue, since sequential
writes are less harmful than random ones [27].
Since the bootstrap is randomly sampled, the
appearance order of elements in the data-set is not
important. Thus, re-writing the data-set in a differ-
ent order does not alter the accuracy of the deci-
sion trees.

3) Effective Random Forests Trees Building: Once the data-
set blocks are written according to the clustering
obtained from the tree T0, the remaining decision
trees of the RF are formed on the basis of the newly
stored data-set.

Note that the building of tree T0 and the writing of the
new data-set are deliberately separated in the previous
explanation for simplicity. In our implementation, see Algo-
rithm 1, their operations are overlapping in a way that each
time a leaf node is reached, its elements are written into
neighbor blocks. The objective of this overlapping is to free
the memory space dedicated to store the element indexes
assigned to a leaf node, as soon as the blocks are written.
Algorithm 1 shows that T0 is built according to the decision
tree building algorithm, except that after splitting a node
(lines 2-5), the pureness of children nodes is checked (lines
6-7). If a resulting node is pure (leaf node), its elements are
written into storage blocks (line 8).

Algorithm 1. T0 Building and Data-Set Reorganization

Data: a matrix of data

1: while there exists an impure node n in the leaves do
2: Create the subset F of features
3: for f 0 to jF j � 1 do
4: Split Trial of node n according to f
5: nl, nr Effective Split of n according to the best feature
6: foreach node cn in fnr; nlg do
7: if cn is pure then
8: Write node elements into the same secondary storage

blocks
9: else
10: Add node cn to impure nodes list

In terms of I/O cost, the T0 tree building step implies the
traditional decision tree I/O cost, plus the cost to write the
new data-set (the volume is equal to the data-set volume).

4.2.3 Method Illustration

Here we illustrate the proposed optimization processing by
applying it to the motivational example. Fig. 4 shows the
tree T0 built by the method. Once the decision tree T0 is
built, the elements are reorganized in the following order:
fA;C;H;D; F;G;E;Bg. Thus, the I/O accesses generated by
the decision tree building are given in Table 6. In compari-
son to Table 3, we observe that for all the nodes, the average
percentage of used data per block with the optimized data-
set is higher or equal to the traditional method. The
additional I/O cost of T0 building and data-set rewriting is
substantial in this small example, but for a realistic case this
cost is largely amortized as it is shown in the evaluation
part.

4.3 On-Demand Data Accesses

In this section, we give more details about the second opti-
mization. We describe each of the three scenarios outlined
in the overview section.

The objective of on-demand data accesses is to reduce the
I/O operations by reading from the storage system, and
keeping in memory, only effectively needed data for the
next steps of the tree building process. Algorithm 2 sets the
data loading method according to the available memory
work-space. If the memory work-space makes it possible to
load all nodes’ data, then it is loaded; and the algorithm
builds a full sub-tree (from the current node to the leaves)
(scenario 1). If the memory space is too small to apply the
scenario 1, then we check whether there is room for loading

Fig. 4. T0 tree.

TABLE 6
I/O Access Pattern for Splitting Each Node of the Motivational Example After Data-Set Reorganization

Node Elements Feature Accessed blocks Average usage per block

N0 fA;A;C;C;H; F;E;Bg f1 (1),(17),(2),(18),(3),(19),(4),(20)
f4 (13),(17),(14),(18),(15),(19),(16),(20) 75%

N1 fA;A;C;C;H; Fg f3 (1),(17),(2),(18),(3),(19)
f4 (13),(17),(14),(18),(15),(19) 66:66%

N2 fB;Eg / (4),(20) 100%
N3 fA;A;C;C;Hg / (1),(17),(2),(18) 75%
N4 fFg / (3),(19),(15),(19) 50%

SLIMANI ETAL.: ACCELERATING RANDOM FORESTON MEMORY-CONSTRAINED DEVICES THROUGH DATA STORAGE OPTIMIZATION 1601

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

data to fully build the current node (scenario 2). In the case
where there is not enough memory space for scenario 2,
then we subdivide data into chunks. We split separately the
node for each chunk, and then we aggregate the children
nodes. Doing so, temporal locality is fully exploited as the
algorithm loads each chunk once and goes through it sev-
eral times to split the current node. The different scenarios
are detailed in the following sections.

4.3.1 Scenario 1, Full Sub-Tree Building

This is the scenario where the available memory space can
hold all the features and the effective class information of
the current node elements. That is M � jNij � Sðdþ 1Þ (see
line 1 of Algorithm 2); the volume jNij � Sðdþ 1Þ is the vol-
ume occupied by the d features of the jNij elements of node
i plus the effective class information (the function SðiÞ
returns the memory space occupied by the i feature values).
In this case, one can load all these data into the memory
work-space and keep them in until reaching the terminal
nodes for the sub-tree whose root node is the current node.
By loading all the features and not only those belonging to
feature set F , we make sure that for the child nodes, the fea-
tures needed are already loaded in memory. In other words,
data features that will be needed in the children nodes are
prefetched.

In order to fully take advantage of the loaded data, we
need to process the nodes in Depth-First strategy by proc-
essing children nodes of the current node instead of a
Breadth-First strategy, where the nodes of the same level
are processed before moving to a deeper level; this way,
data that are already in memory will be re-exploited for the
full sub-tree without generating more I/O operations.

4.3.2 Scenario 2, Full Node Building

This is the scenario where the memory work-space cannot
hold all the d features but is large enough to contain cur-
rently needed features, that is jNij � SðjF j þ 1Þ �M <
jNij � Sðdþ 1Þ (see line 4 of Algorithm 2). In this case, we
load the features of the elements that belong to the feature
set F and keep them in memory until the node is fully
processed.

By reducing the volume of data to the useful data only,
we reduce the amount of I/O operations that occur during
the step 2 of decision tree building and avoid swapping in

and out due to memory pages that contain both useful and
useless data (as outlined in the background section).

Note that in the scenarios 1 and 2, the useful data are
loaded right after setting the loading method as shown in
lines 3 and 6 of Algorithm 2.

Algorithm 2. Data Loading

Data:Ni : Node to be processed, M: Available memory work-
space , D : Data-set file , F : set of features to be tested

1: if jNij � Sðdþ 1Þ �M then
2: Scenario scenario 1
3: Read from D all the features of elements of Ni into the

matrixX
4: else if jNij � SðjF j þ 1Þ �M then
5: Scenario scenario 2
6: Read from D features belonging to feature set F of ele-

ments ofNi into the matrixX
7: else
8: Scenario scenario 3

4.3.3 Scenario 3, per-Chunk Split Trial

This strategy is used when the useful data cannot fit in
memory. The case occurs when M < Ni � SðjF j þ 1Þ, mean-
ing that the memory work-space cannot hold all the features
of the feature set F plus its class. In that situation, variable
Scenario is set to scenario 3 in line 8 of Algorithm 2. The idea
is to process data per chunk that can fit in memory. In other
words, we perform the split trial on each chunk. This means
that we divide the step 2 of decision tree building algorithm
to the steps shown in Algorithm 3 and Fig. 5, summarized
as follows:

1) Load one chunk of elements of node i that can fit into
memory: a chunk is a subdivision of M

SðjF jþ1Þ elements
of node i. SðjF j þ 1Þ is the volume occupied by use-
ful data on a single element, and then M

SðjF jþ1Þ is the
number of elements that can be kept in memory. The
first step of the algorithm is to read the values of fea-
tures in the feature set F for each element of the
chunk from the data-set file (see line 2 of Algo-
rithm 3). This step is performed using an initially
built index that helps finding the positions of ele-
ments in the data-set file.

2) Process each chunk independently: For each chunk, the
method builds the jF j potential trees by distributing
the elements of the chunk according to the jF j fea-
tures; this is the application of split trial on the chunk
(see lines 4 and 5 of Algorithm 3). As shown in Fig. 5,
elements of each chunk are distributed according to
the features to test ff1; f2g to obtain 2 potential trees.

3) Repeat the steps (1) and (2) until all the chunks of the
current node elements are processed.

4) Combine the obtained trees: This step aims at merging
the jF j potential trees obtained from each chunk (see
line 6 of Algorithm 3). Merging potential trees of the
chunks according to one feature of the set F is per-
formed as follows:
1) Group the child nodes that correspond to the

same test value over the chunks. In Fig. 5, we
observe that for each feature (f1 and f2), the

Fig. 5. Scenario 3 processing.

1602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

right and left nodes of the resulting potential
trees according to each chunk are merged to
obtain the final potential trees.

2) Compute the number of elements per class in
each group: the number of elements per child
node are summed over the chunks to obtain the
number of elements per class and per node of
the final potential tree. No additional I/Os are
incurred in this step.

The choice of the best feature can thus be deduced as in
the traditional method.

The division and combination methods described above
do not alter the final obtained trees, since analytically, the
pureness measurement is the same as in the traditional
method.

Algorithm 3. Process the Node per Chunk

Data: D: Data-set file, F set: splitting features set
Result: Potential jF j trees

1: for c 0 to jNi j�SðjF jþ1Þ
M -1 do

2: Load from D chunk c
3: // Process each chunk
4: for f 0 to jF j � 1 do
5: Split trial of chunk c according to f
6: Combine the obtained sub-trees

4.4 New RF Algorithm

The proposed RF algorithm relies on the two previously
detailed optimizations. It is given in Algorithm 4. The first
step consists of reorganizing the data-set using Algorithm 1.
Once the new data-set reorganized, decision trees are built
using on-demand data accessed by taking into consider-
ation the available memory work-space.

Algorithm 4. RF New Algorithm

Data: Original Data-set
1: Build Tree T0 and Reorganize Data-set (Algorithm 1)
2: for t 0 to T � 1 do
3: Create a bootstrap
4: while there exists an impure node n among the children of the

current do
5: Create the subset F of features
6: Data loading (Algorithm 2)
7: if Scenario 6¼ scenario 3 then
8: Split trial using traditional method
9: else
10: Process the node per chunk (Algorithm 3)
11: Choose the best feature that gives the purest child

nodes
12: Effectively split the node n according to the best feature
13: Add the built tree to the RF

14: return RF

5 EVALUATION

In this section, we start by describing the evaluation meth-
odology. Then we show the obtained results and discuss
them.

5.1 Evaluation Methodology

The proposed method was compared to the Ranger Frame-
work [19] which is widely used and referenced in literature.
Ranger is chosen as a reference method since it is popular
and already integrates optimizations that aim to reduce
memory footprint when building RF. More details about the
reference study are given in the related work section.

5.1.1 Experiments

Our objective with these experiments is to measure the exe-
cution time reduction performed by the proposed optimiza-
tions in comparison to state-of-the-art method, then, we
evaluate the impact of parameters that are specific to each
proposed optimization on the efficiency of the method. The
experiments performed are the following.

� Experiment 1: In this experiment, we measure the
overall performance of the proposed strategy and
compare it to the reference method. We also show
the impact of each optimization on the overall per-
formance for our strategy. We do so for different
memory configurations (N=M). N=M values used
for this experiment are f1; 2; 4; 8g, the number of
decision trees to build was set to 25.

� Experiment 2: The objective of this experiment is to
analyze the execution time reduction performed by
the first optimization, that is data-set reorganization
with the increase of the number of trees in the RF. To
perform this experiment, we set the memory con-
straint to N=M ¼ 4 and vary the number of decision
trees to build T such as T ¼ f25; 50; 100; 150g.

� Experiment 3: In order to check whether the prefetch-
ing has an effect on the obtained results, we mea-
sured execution time reduction obtained by data-set
reorganization as compared to Ranger Framework
on ”Adult” data-set with enabled and disabled
prefetching.

� Experiment 4: The objective of this experiment is to
evaluate the efficiency of the second optimization,
that is on-demand data access, for each scenario in
terms of execution time reduction. To do so, for both
the proposed method and the traditional method,
we performed the following: 1) we identified for

TABLE 7
Used Data-Sets

Type Data-set Number of
features

Number of
observations

Data-set file
size (Mo)

Real Covertype 54 581012 239.36
Wearable 8 75128 4.58
Adult 14 48842 5.21
Ecoli 8 336 0.02
Heart
Failure

299 13 0.03

Wine 178 13 0.01
Poker 11 25010 2.1

Synthetic 16 100000 48.82
32 5000
64 2500
182 1250

SLIMANI ETAL.: ACCELERATING RANDOM FORESTON MEMORY-CONSTRAINED DEVICES THROUGH DATA STORAGE OPTIMIZATION 1603

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

each node the scenario to use in terms of memory
space, 2) we summed the execution times per sce-
nario for the on-demand data access optimization
and the reference method, 3) we computed and com-
pared the average execution time for each scenario
under the following memory constraints N=M ¼
f1; 2; 4; 8; 16g. The used data-set in this experiment is
”Wearable” (see Table 7).

� Experiment 5: In this experiment, our objective is to
evaluate the performance of the second optimization
compared to the reference method for different num-
ber of features. To do so, we used the same volume
of learning data while varying the number of fea-
tures: d ¼ 16; 32; 64 and 128. For each value of d, we
varied the memory constraints such as N=M takes
the following values: 1; 2; 4; and 8.

� Experiment 6: The objective of this experiment is to
estimate the energy reduction performed by the
data-set reorganization of RaFIO as compared to
Ranger Framework. We used pyJoules toolkit [28],
that measures the energy footprint of a piece of code.
The experiment was run using ”Adult” data-set.

� Experiment 7: In order to check that running our
experiments on a virtual machine does not have
impact on the obtained results, we measured the exe-
cution time reductions with ”Adult” data-set on
another physical machine which features are the fol-
lowing: Dell Inspiron 3543 with an Intel Core i5-
5200U, 8GB RAM and 512GB HDD. We also ran the
same measures on a Linux virtual machine hosted in
this physical one and compared the obtained results.

� Experiment 8: In order to check for the efficiency of
RaFIO on an embedded device, we measured the
execution time reduction of RaFIO as compared to
Ranger on a BeagleBone Black [29] which features
are an AM335x 1GHz ARM Cortex-A8 core, 512MB
DDR3 RAM, 4GB 8-bit eMMC on-board flash stor-
age. We plugged a 16GB SD card, 14 GB were used
to store data-sets and 2 GB as a swap space4. The
data-set ”Adult” was used in this experiment. We

ran the experiment with the Linux page cache read-
ahead prefetching both enabled and disabled.

5.1.2 Experimental Setup

In the previously listed experiments, we measured the over-
all execution time, that is the whole tree building time
(including processing and I/Os). The additional time for
building the T0 decision tree for the data-set reorganization
optimization and the new data-set writing time were
included in the execution time measure. Each measure was
ran 5 times. In Section 5.2, we show the averages of the
obtained results with a 5% confidence interval.

In our experiments, we used 3 real data-sets provided on
UCI Machine Learning Repository [23], plus a synthetic
one. Details about the used data-sets are given in Table 7.
Note that Ecoli, Heart Failure, Wine and Poker data-sets
were used to evaluate the similarity property in Table 5. In
Experiment 4, we used 4 synthetic data-sets to vary the
number of features. They were generated using the classifi-
cation data-set generator provided in the Scikit-Learn
Framework [26].

The measures were performed on a Linux Virtual
Machine configured with 1 core and 4 GB of RAM memory,
and 10 GB storage formatted with ext4 in order to simulate
embedded platforms with varying memory constraints. The
host machine is a Dell Latitude 5590 with an Intel Core i7-
8650U, 8 GB RAM, and INTEL SSDSCKKF512G8 SATA 512
GB storage. The memory constraints (N=M) were applied
using the cgroup mechanism [30]; it allows to limit the vol-
ume of memory that can be allocated to a process. The
cgroup mechanism was used to emulate small memory
footprints instead of a real edge device. This was done to
explore a larger configuration space. The I/O block size is
set to the default Linux I/O block size (4KB). This hardware
setup is used for all the experiments.

5.2 Results and Discussion

5.2.1 Experiment 1

Figs. 6a, 6b and 6c respectively show the execution time
reductions performed by the first optimization, the second
and the combination of both of them in comparison to
Ranger. We observe that the data-set reorganization (Opti-
mization 1) is slightly more efficient with low N=M values.

Fig. 6. Experiment 1 results.

4. both the SD card and eMMC flash memories were tested, they
gave similar results. SD card configuration is presented in this paper

1604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

In fact, even if the data-set organization gives a data-set
organized such as all the elements of a block belong to the
same nodes, when N=M is very high, the number of ele-
ments affected to a node is likely to be greater than M.
Thus, the volume of I/Os when dividing the node is high.
Optimization 2 performance allows more efficiency with
the high values of N=M than Optimization 1. This is
because on-demand data accesses allow to reduce the vol-
ume of I/Os since only the effectively needed data are
loaded. Fig. 6c shows that the combination of the two opti-
mizations allows to reach, on average, the highest execution
time reduction. In fact, this combination makes the blocks
kept in memory contain only effectively needed elements,
which are ordered such as data locality is higher. We
observe that for some measures, the combination of the two
optimizations is less performing than Optimization 2. We
believe that it is due to two main reasons: (1) the random
nature of bootstrap creation and the feature selection, we
think that the variability of the results is high, (2) we believe
that in some rare cases, the data reorganization achieved
may not fit with some specific feature selection patterns. In
most cases, the overall optimization is higher than both
optimizations, in some cases it is between those (some inter-
ference between optimizations), but in all measures, it was
never lower than both optimizations.

Overall, the average execution time reduction performed
respectively by Optimization 1, 2 and their combination are:
58%, 64% and 78%.

5.2.2 Experiment 2

Fig. 7a shows the execution time reductions performed by
the first optimization (Data Reorganization) for different
number of decision trees. We observe that execution time
reduction ranges between 41 and 80%.

Fig. 7b shows the proportion of time necessary to reorga-
nize the data-set (T0 building and data-set writing times)
compared to the overall random forest building time of the
proposed method (T0 and the T RF trees building time). We
observe that the higher the number of trees in a random for-
est, the smaller this proportion.

Fig. 7c, represents the I/O time reduction achieved by the
proposed method compared to the reference one. We

observe that the I/O time reduction follows the curve of
execution time reduction.

We observe a slight increase in the execution time reduc-
tion (Fig. 7a) between T ¼ 25 and T ¼ 50. This is because
the proportion of time necessary for building decision tree
T0 becomes less important in comparison to the remaining
trees building time. The remaining measurements show
that the execution time reduction remains almost stable for
each data-set, because the T0 building time becomes negligi-
ble in comparison to the overall RF building time. Thus,
since a data-set reorganization performs a given execution
time reduction for one tree, the execution time reduction for
all the RF is theoretically the same when neglecting T0 build-
ing time, which is consistent with the obtained experimental
results.

5.2.3 Experiment 3

Fig. 8 shows execution time reductions performed by RaFIO
as compared to Ranger Framework when the prefetching is
enabled and disabled. We observe that there is a negligible
difference between the obtained results with and without
prefetching enabled. In fact, we can explain this by the data
read operations pattern which is not fully sequential.

5.2.4 Experiment 4

Fig. 9 shows the average processing time reduction per-
formed by the second optimization (on-demand data
accesses) compared to the reference method for each sce-
nario. Fig. 10 shows the weighted execution time reduction;

Fig. 7. Experiment 2 results.

Fig. 8. Experiment 3 results.

SLIMANI ETAL.: ACCELERATING RANDOM FORESTON MEMORY-CONSTRAINED DEVICES THROUGH DATA STORAGE OPTIMIZATION 1605

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

it is obtained by multiplying the execution time reductions
given in Fig. 9 by the proportions of number of nodes con-
cerned per each scenario. For N=M ¼ 1, since the memory
is large enough to contain the whole data-set, scenario 3
never happens. Scenario 2 occurs with the topmost nodes
that contain a large number of elements whilst memory
work-space contains other structures used by the program.
We observe from the figure that the strategy used by the
proposed method in this scenario is less efficient than the
reference method. This is because when the method loads
useful data, it uses data location index and accesses all the
data blocks whilst the amount of data to swap-in is low for
the reference method since the data-set almost fits in mem-
ory. However, since there are very few nodes concerned by
this scenario (only the topmost ones), this loss is negligible
compared to the reduction achieved in scenario 1 as shown
in Fig. 10.

When N=M ¼ 2, we observe that the strategy used by
our method with scenarios 2 and 3 is less efficient in com-
parison to the reference method. The reason is the same as
with scenario 2 when N=M ¼ 1, the volume of I/Os caused
by chunks loading out-passes the swap occurring with the
reference method. However, Fig. 10 shows that these losses
are negligible in comparison to the reduction that it per-
forms for scenario 1.

For N=M ¼ 8, we observe that the three scenarios reduce
the execution time by respectively up to 35%, 20% and 17%
as compared to the traditional method.

In general, scenario 1 optimization is efficient when
memory constraints are weak (a memory work-space size
that is close to the bootstrap size) whereas scenarios 2 and 3
are efficient with stronger memory constraints (high values
of N=M). The usefulness of scenario 2 and 3 is also related
to the tree nature. The shallower the tree (with high memory
constraints) the more effective scenario 2 and 3 are.

5.2.5 Experiment 5

In this experiment, we give the execution time reductions
obtained with our method compared to the traditional
Ranger implementation for different number of feature val-
ues (d). The results are shown in Fig. 11. Overall, our
method reduces the execution time by a factor laying
between 15% - 90%. Two observations can be drawn from
this experiment: (1) the proposed method is more profitable
for a smaller number of features. This is because we have
kept the same data-set file size for all the generated data-
sets. As a consequence, when increasing the number of fea-
tures, the number of elements decreases and consequently
the depth of the built tree decreases too. Since the number
of elements of the tree is small when it comes to a higher
number of features, the number of nodes to build is smaller.
Node split is the step that causes more I/O operations; thus,
the execution time reductions are smaller than that for a
lower number of features. (2) The second observation is that
for the same number of features, the execution time reduc-
tion decreases between some successive values of N=M.
This happens for d ¼ 16 between N=M ¼ 1 and N=M ¼ 2;
d ¼ 32, d ¼ 64 and d ¼ 128 between N=M ¼ 2 and N=M ¼
4. This is because for higher values of N=M, the on-demand
data accesses method starts using the scenario 3; this
implies to perform more I/O operations than those in sce-
narios 1 and 2.

5.2.6 Experiment 6

Fig. 12 shows the execution time, RAM main memory and
CPU core energy reduction Energy and CPU Core energy
reductions. We can observe that the energy optimization
realized with RaFIO is correlated to the execution time
reduction. The respective average reductions are 72 (for
time), 74 (memory energy) and 72 (CPU core energy)%.

Fig. 10. Weighted execution time reduction.

Fig. 11. Experiment 5 results.

Fig. 12. Experiment 6 results.

Fig. 9. Average execution time reduction performed.

1606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

5.2.7 Experiment 7

Fig. 13 shows the time reduction brought by our contribu-
tion compared to the traditional algorithm. We can see that
the difference between running the experiment within and
out of a virtual machine is negligible.

5.2.8 Experiment 8

The obtained results are given in Fig. 14. We observe that
the execution time reductions are comparable to the ones
obtained in Experiment 1. As in Experiment 3, we also
observe that the page cache read-ahead prefetching does
not have a significant impact on the results. Overall RaFIO
proved to be as efficient on the tested embedded platform
as on a virtual machine.

6 RELATED WORK

Some studies have been conducted to optimize RF algo-
rithm in order to tackle the fast expansion of data volumes
in a big data context. We can coarsely classify these studies
into the following categories.

The first one investigates parallel implementation at the
forest level, that is decision tree buildings are performed in
parallel [31].

The second category of optimizations acts on bootstrap
sampling method. Authors of [32] and [33] propose meth-
ods based on bootstraps that contain less elements and sam-
pled without replacement in comparison to the original
method. This allows to reduce both computation and vol-
ume of data to span in comparison to the original method.
In [34], the authors exploit the fact that the bootstrap is
formed using a random sampling with replacement. In fact,
this means that two consecutive bootstraps formed to build
two trees are likely to contain common elements. Thus, the
idea proposed by the authors is to pin in memory a propor-
tion of elements between two consecutive tree buildings.
This allows to elegantly reduce the volume of I/O opera-
tions by avoiding to load elements that were already in
memory during previous tree building. This method can be
coupled to our method in the case low N=M (near to 1) val-
ues. In the case of high N=M values, the I/Os occur at the
node division level, thus, coupling this method to ours
would increase even more the proportion N=M.

Another category of optimization proposed for RF acts at
the decision tree building level. In [35], the authors pro-
posed a hybrid depth-first, breadth-next decision tree build-
ing strategy. These two building modes are employed

according to the number of elements per node. This method
allows a better exploitation of cache memory. Our previous
work [18] showed that the on-demand data access (Optimi-
zation 2) reduces decision tree building time by 10 to 70% in
comparison to this method. Ranger Framework [19] also
falls in this category of optimizations. It employs two differ-
ent data structures that are respectively suitable for the
nodes that have a high or low number of elements.

Other studies such as [36], [37] propose methods to opti-
mize decision tree storage to reduce the memory footprint
of the method, and thus, data movements between main
memory and secondary storage, when performing infer-
ence. Such methods can be combined with RaFIO to store
the built forest in an optimized manner.

On the one hand, different studies have shown the
importance of a good spatial locality for diverse applica-
tions as for machine learning algorithms [38], distributed
algorithms [39], GPU caches [40]. On the other hand, different
machine learning techniques are used to predict data local-
ity [39]. Our objective in this study is to take advantage of
decision tree knowledge (the ML algorithm itself) to
enhance spatial locality. To the best of our knowledge, no
similar method have been proposed in the case of Random
Forests. We combine this spatial locality enhancement with
an on-demand data access to eliminate useless data
accesses.

7 CONCLUSION

In this paper, we proposed an I/O-aware Random Forest
algorithm. It is motivated by the fact that training a random
forest in a memory constrained environment causes a sub-
stantial I/O volume. Our experiments show that by build-
ing a decision tree when the volume of the data-set is 8
times the volume of available memory, the I/O time repre-
sents 88% of the overall building time.

The proposed algorithm relies on two principles : (1)
Data reorganization, the objective is to deduce from the first
built tree which data are likely to be accessed within the
same time window. This information is used to write a new
data-set to enhance the spatial locality when building the
remaining decision trees. (2) On-demand data accesses, the
objective of this optimization is to remove the assumption
that the data-set is memory resident, thus, avoiding useless
data swaps to the secondary storage. In the proposed algo-
rithm, the data is accessed at the decision tree node level,
such as to only load data that is effectively needed. The ben-
efit of our contribution depends on the performance ratio

Fig. 13. Experiment 7 results. Fig. 14. Experiment 8 results.

SLIMANI ETAL.: ACCELERATING RANDOM FORESTON MEMORY-CONSTRAINED DEVICES THROUGH DATA STORAGE OPTIMIZATION 1607

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

between the main memory and the secondary storage used,
which is always high, even with optimized storage devices.

Our experiments show that the data-set reorganization
allows to reduce execution time by 63% on average when
the volume of data to process is 4 times the available mem-
ory work-space. On-demand data accesses optimization
allows to reduce a decision tree building time by 71% on
average in comparison to the state-of-the-art method evalu-
ated. The combination of the two optimizations allows to
reduce execution time by nearly 75% in comparison to the
reference method.

As a future work, we aim to apply the data-set reorgani-
zation to other ensemble learning methods, since they are
based on training multiple models on the same data-set. In
addition, the on-demand data access paradigm instead of a
memory resident data-set assumption can be generalized to
other machine learning algorithms.

REFERENCES

[1] D. Reinsel, J. Rydning, and J. F. Gantz, “Worldwide global data-
sphere forecast, 2020–2024: The COVID-19 data bump and the
future of data growth,” Apr. 2020. [Online]. Available: https://
www.idc.com/getdoc.jsp?containerId¼US44797920

[2] H. Abbas et al., “Special session: Embedded software for robotics:
Challenges and future directions,” in Proc. Int. Conf. Embedded
Softw., 2018, pp. 1–10.

[3] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Bar-
naghi, and A. P. Sheth, “Machine learning for Internet of Things
data analysis: A survey,” Digit. Commun. Netw., vol. 4, no. 3,
pp. 161–175, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S235286481730247X

[4] T. Muhammed, R. Mehmood, A. Albeshri, and I. Katib,
“UbeHealth: A personalized ubiquitous cloud and edge-enabled
networked healthcare system for smart cities,” IEEE Access, vol. 6,
pp. 32 258–32 285, 2018.

[5] P. C. M. Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, and
M. Atiquzzaman, “A trustworthy privacy preserving framework
for machine learning in industrial IoT systems,” IEEE Trans. Ind.
Informat., vol. 16, no. 9, pp. 6092–6102, Sep. 2020.

[6] X. Li, J. Tan, A. Liu, P. Vijayakumar, N. Kumar, andM. Alazab, “A
novel UAV-enabled data collection scheme for intelligent trans-
portation system through UAV speed control,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 4, pp. 2100–2110, Apr. 2021.

[7] N. Kukreja et al., “Training on the edge: The why and the how,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2019,
pp. 899–903.

[8] S. Branco, A. G. Ferreira, and J. Cabral, “Machine learning in
resource-scarce embedded systems, FPGAs, and end-devices: A
survey,” Electronics, vol. 8, no. 11, 2019, Art. no. 1289. [Online].
Available: https://www.mdpi.com/2079–9292/8/11/1289

[9] O. Mutlu, S. Ghose, and R. Ausavarungnirun, “Recent advances in
overcoming bottlenecks in memory systems and managing mem-
ory resources in GPU systems,” 2018, arXiv:1805.06407.

[10] G. S. Nagpal, G. Singh, J. Singh, and N. Yadav, “Facial detection and
recognition using OpenCV on raspberry Pi zero,” in Proc. IEEE Int.
Conf. Adv. Comput. Commun. Control Netw., 2018, pp. 945–950.

[11] A. Alarc�on-Paredes, V. Francisco-Garc�ıa, I. P. Guzm�an-Guzm�an, J.
Cantillo-Negrete, R. E. Cuevas-Valencia, and G. A. Alonso-Silverio,
“An IoT-based non-invasive glucose level monitoring system using
raspberry Pi,”Appl. Sci., vol. 9, no. 15, 2019, Art. no. 3046.

[12] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine
learning in 2 KB RAM for the Internet of Things,” in Proc. 34th Int.
Conf. Mach. Learn., 2017, pp. 1935–1944.

[13] J. Shotton, T. Sharp, P. Kohli, S. Nowozin, J. Winn, and
A. Criminisi, “Decision jungles: Compact and rich models for
classification,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2013,
pp. 234–242.

[14] K. H. Lee and N. Verma, “A low-power processor with configura-
ble embedded machine-learning accelerators for high-order and
adaptive analysis of medical-sensor signals,” IEEE J. Solid-State
Circuits, vol. 48, no. 7, pp. 1625–1637, Jul. 2013.

[15] Y. Lu, “Industry 4.0: A survey on technologies, applications and
open research issues,” J. Ind. Inf. Integr., vol. 6, pp. 1–10, 2017.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2452414X17300043

[16] L. Breiman, “Random Forests,”Mach. Learn., vol. 45, pp. 5–32, 2001.
[17] C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and

Applications. Berlin, Germany: Springer, 2012.
[18] C. Slimani, C.-F. Wu, Y.-H. Chang, S. Rubini, and J. Boukhobza,

“RaFIO: A random forest I/O-aware algorithm,” in Proc. 36th
ACM Symp. Appl. Comput., 2021, pp. 521–528.

[19] M. Wright and A. Ziegler, “ranger: A fast implementation of ran-
dom forests for high dimensional data in C++ and R,” J. Statist.
Softw., vol. 77, pp. 1–17, 2017.

[20] D. Bovet and M. Cesati, Understanding The Linux Kernel. Sebasto-
pol, CA, USA: O’Reilly, 2005.

[21] C. Guyeux, S. Chr�etien, G. B. Tayeh, J. Demerjian, and J. Bahi,
“Introducing and comparing recent clustering methods for mas-
sive data management in the Internet of Things,” J. Sensor Actuator
Netw., vol. 8, no. 4, 2019, Art. no. 56. [Online]. Available: https://
www.mdpi.com/2224–2708/8/4/56

[22] J. Santos and M. Embrechts, “On the use of the adjusted rand
index as a metric for evaluating supervised classification,” in Proc.
Int. Conf. Artif. Neural Netw., 2009, pp. 175–184.

[23] D. Dua and C. Graff, “UCI machine learning repository,” 2019.
[Online]. Available: http://archive.ics.uci.edu/ml

[24] D. Rosenberg, “Bagging and random forests,” Mar. 2015.
[25] M. Rodriguez et al., “Clustering algorithms: A comparative

approach,” PLoS One, vol. 14, 2016, Art. no. e0210236.
[26] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,”

J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.
[27] J. Boukhobza and P. Olivier, Flash Memory Integration: Performance

and Energy Issues, 1st ed. Amsterdam, The Netherlands: Elsevier,
2017. [Online]. Available: http://www.sciencedirect.com/science/
book/9781785481246

[28] Welcome to Pyjoules’s documentation!, “Welcome to pyJoules’s
documentation! - pyJoules 0.2.0 documentation.,” 2021. Accessed:
Nov. 3, 2022. [Online]. Available: https://pyjoules.readthedocs.
io/en/latest/index.html

[29] G. Coley, “System reference manual � Beagleboard/Beaglebone-Black
Wiki,” GitHub, 2021. Accessed: Nov. 3, 2022. [Online]. Available:
https://github.com/beagleboard/beaglebone-black/wiki/System-
Reference-Manual

[30] P. Menage, “Cgroups,” 2004. Last Accessed: Jul. 28, 2020. [Online].
Available: https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt

[31] R. Genuer, J.-M. Poggi, C. Tuleau-Malot, and N. Villa-Vialaneix,
“Random forests for big data,” Big Data Res., vol. 9, pp. 28–46, 2017.

[32] P. Bickel, F. G€otze, and W. V. Zwet, “Resampling fewer than n
observations: Gains, losses, and remedies for losses,” Statistica
Sinica, vol. 7, no. 1, pp. 1–31, 1997.

[33] A. Kleiner, A. Talwalkar, P. Sarkar, and M. Jordan, “A scalable
bootstrap for massive data,” J. Roy.Statist. Soc. Ser. B Statist. Meth-
odol., vol. 76, no. 4, pp. 795–816, 2014.

[34] Y. T. Ho, C. Wu, M. Yang, T. Chen, and Y. Chang, “Replanting
your forest: NVM-friendly bagging strategy for random forest,” in
Proc. IEEE Non-Volatile Memory Syst. Appl. Symp., 2019, pp. 1–6.

[35] A. Anghel, N. Ioannou, T. P. Parnell, N. Papandreou, C. Mendler-
D€unner, and H. Pozidis, “Breadth-first, depth-next training of ran-
dom forests,” 2019, arXiv:1910.06853.

[36] M. Madhyastha, K. Lillaney, J. Browne, J. Vogelstein, and
R. Burns, “PACSET (packed serialized trees): Reducing inference
latency for tree ensemble deployment,” 2020, arXiv:2011.05383.

[37] M. Madhyastha, K. Lillaney, J. Browne, J. T. Vogelstein, and
R. Burns, “BLOCKSET (block-aligned serialized trees) reducing
inference latency for tree ensemble deployment,” in Proc. 27th ACM
SIGKDDConf. Knowl. Discov. DataMining, 2021, pp. 1170–1179.

[38] I. Chakroun, T. V. Aa, and T. Ashby, “Guidelines for enhancing
data locality in selected machine learning algorithms,” Intell. Data
Anal., vol. 23, no. 5, pp. 1003–1020, 2019.

[39] E. Kayraklioglu, E. Favry, and T. El-Ghazawi, “A machine learn-
ing approach for productive data locality exploitation in parallel
computing systems,” in Proc. IEEE/ACM 19th Int. Symp. Cluster
Cloud Grid Comput., 2019, pp. 361–370.

[40] S. Lal and B. Juurlink, “A quantitative study of locality in
GPU caches,” in Proc. Int. Conf. Embedded Comput. Syst., 2020,
pp. 228–242.

1608 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

https://www.idc.com/getdoc.jsp?containerId=US44797920
https://www.idc.com/getdoc.jsp?containerId=US44797920
https://www.idc.com/getdoc.jsp?containerId=US44797920
http://www.sciencedirect.com/science/article/pii/S235286481730247X
http://www.sciencedirect.com/science/article/pii/S235286481730247X
https://www.mdpi.com/2079--9292/8/11/1289
https://www.sciencedirect.com/science/article/pii/S2452414X17300043
https://www.sciencedirect.com/science/article/pii/S2452414X17300043
https://www.mdpi.com/2224--2708/8/4/56
https://www.mdpi.com/2224--2708/8/4/56
http://archive.ics.uci.edu/ml
http://www.sciencedirect.com/science/book/9781785481246
http://www.sciencedirect.com/science/book/9781785481246
https://pyjoules.readthedocs.io/en/latest/index.html
https://pyjoules.readthedocs.io/en/latest/index.html
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

Cam�elia Slimani received the engineering degree
(with Hons.) in computer science from Ecole natio-
nale Sup�erieure d’Informatique (ESI), Algiers,
Algeria, the MSc degree (with Hons.) in computer
science from the University of Bretagne Occiden-
tale, France, in 2018, and the PhD degree in com-
puter science from the University of Bretagne
Occidentale, France, in 2022. She is now a post-
doctoral researcher with ENSTA Bretagne, France.
Her research interests include the optimization of
machine learning algorithms in terms of I/Os in the
context ofmemory constrained environments.

Chun-Feng Wu (Member, IEEE) received the MS
degree from the Department of Computer Science,
National Tsing-Hua University, in 2016, and the PhD
degree from the Department of Computer Science
and Information Engineering, National Taiwan Uni-
versity, Taipei, Taiwan, in 2021. Currently, he is an
assistant professorwith theDepartment ofComputer
Science, National Yang Ming Chiao Tung University,
Hsinchu, Taiwan. Previously, He was a postdoctoral
scholar with the Department of Computer Science,
Harvard University, Cambridge from 2021 to 2022.

He served inR&Dalternative servicewith the Institute of InformationScience,
Academia Sinica, Taipei, Taiwan, from 2017 to 2021. His primary research
interests include memory/storage systems, embedded systems, operating
systemsand the next-generationmemory/storage architecture designs.

St�ephane Rubini received the graduate degree in
electrical and computer engineering from the Ecole
Nationale d’Ing�enieurs de Brest (ENIB), in 1991,
and the PhD degree in computer science from the
University of Rennes I, in 1995. Currently, he is an
associate professor of computer science with the
Department of Computer Science, University of
Brest, France. He is part of the Lab-STICC Labora-
tory. His research interests comprise the design of
dedicated computer architectures on reconfigurable
hardware targets, and most generally the matching

between software algorithms and hardware. He has contributed to the hard-
ware/software development of several processing machines for filtering
genomic banks. He is currently working on the modeling and exploitation of
complex memory architectures in the context of embedded systems.

Yuan-HaoChang (SeniorMember, IEEE) received
the PhD degree in computer science from the
Department of Computer Science and Information
Engineering, National Taiwan University, Taipei.
He is currently a research fellowwith the Institute of
Information Science, Academia Sinica, Taipei.
He is a senior member of the ACM. His research
interests include memory/storage systems, operat-
ing systems, embedded systems, and real-time
systems.

Jalil Boukhobza (SeniorMember, IEEE) received
the electrical engineering (with Hons.) degree from
the Institut Nationale d’Electricite et d’electronique
(I.N.E.L.E.C) Boumerdes, Algeria, in 1999, and
the MSc and PhD degrees in computer science
from the University of Versailles, France, in 2000
and 2004, respectively. He is a professor with the
ENSTA-Bretagne, a French State Graduate, Post-
Graduate and Research Institute. He was a
research fellow with the PRiSM Laboratory (Uni-
versity of Versailles) from 2004 to 2006. He was an

associate professor with the University Bretagne Occidentale, Brest,
France, from 2006 to 2020 and is a member of Lab-STICC. He has also
been working with the Technology Research Institute (IRT) bcom since
2013. His main research interests include storage system design, perfor-
mance evaluation and energy optimization, and operating system design.
He works on different application domains such as embedded systems,
cloud computing, and database systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SLIMANI ETAL.: ACCELERATING RANDOM FORESTON MEMORY-CONSTRAINED DEVICES THROUGH DATA STORAGE OPTIMIZATION 1609

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:52:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

