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Abstract—The advance of nonvolatile memory in storage
technology has presented challenges in redefining the ways in
handling the main memory and the storage. This work is moti-
vated by the strong demands in effective handling of page faults
over ultralow-latency storage devices. In particular, we propose
synchronous and asynchronous prefetching strategies to satisfy
process executions with different memory demands in supporting
of synchronous page fault handling. An adaptive CPU schedul-
ing strategy is also proposed to cope with the needs of processes
in maintaining their working sets in the main memory. Six rep-
resentative benchmarks and applications were evaluated. It was
shown that our strategy can effectively save 12.33% of the total
execution time and reduce 13.33% of page faults, compared to the
conventional demand paging strategy with nearly no sacrificing
of process fairness.

Index Terms—Context switch, data prefetching, killer
microsecond, page faults, process scheduler, synchronous I/O
completion designs, ultralow-latency (ULL) devices.

I. INTRODUCTION

THE ADVANCE of nonvolatile memory (NVM) tech-
nology has introduced ultralow-latency (ULL) storage

devices and significantly shrink the performance gap between
the main memory and the storage [1], [2], [3], [4], [5]. In
contrast of traditional storage devices [e.g., conventional solid-
state drives (SSDs)], ULL storage devices are one of the
promising candidates to be configured to a swap area for
extending main memory capacity. It further triggers the recon-
sideration of asynchronous page faults used in the common
practice because the context switching time in handling such
page faults is now considered pretty long [6], [7], [8], [9].
In the above studies, IBM and Intel researchers suggested
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to consider synchronous page fault handling to have CPUs
busy waiting for handling processes’ page faults. The impor-
tant observations motivate this work in exploring the essential
technical issues in handling synchronous page faults with
the supports of ULL storage devices, such as processes’
prefetching and CPU scheduling.

Although synchronously handling page fault can get rid of
the context switch overhead, systems still need to spend time
on waiting for the completion of the page movement between
memory and ULL storage devices. To hide the cost of page
movement, prefetching multiple pages simultaneously from
ULL storage devices to DRAM is one of the effective solu-
tions. Note that the performance costs of data prefetching can
be hidden by the high parallelism provided by both ULL stor-
age devices and peripheral buses. MemPod [10], a lightweight
hybrid memory management solution, adopts the heuristic
majority element algorithm [11] to monitor access hotness for
each page and relocates hotter pages to the fast memory (e.g.,
DRAM). MemPod works well for CPU-intensive applica-
tions, but cannot show good performance on memory-intensive
applications. The reason is that, MemPod relies on historical
information to make relocation (or migration) decision, but
hotter pages in memory-intensive applications have a longer
reuse distance than that in CPU-intensive applications. In this
case, MemPod and least recently used (LRU)-based manage-
ments show similar performance improvement when managing
memory-intensive applications. In addition to only reply on
access hotness, data prefetching solutions relying also on pro-
cess access behaviors (e.g., access patterns on physical or
virtual address space) can provide better performance. Please
note that, the baseline setting of all experiments in this work
adopts the LRU-based management.

To prefetch pages with considering access patterns on phys-
ical address space, Saxena and Swift [12] proposed FlashVM
to prefetch data stored in their flash-memory storage device’s
nearby physical addresses to the DRAM-base main memory.
However, Badam and Pai [13] pointed out that the performance
of FlashVM could drop seriously while the total size of the
flash-memory storage device significantly exceeds the DRAM
size. In addition to the physical-address-space prefetching,
Wu et al. [14] showed the strong spatial locality in the vir-
tual address space of the main memory, and proposed a joint
management framework to prefetch sequential pages in the vir-
tual address space (denoted as virtual prefetching for the rest
of this article). Moreover, with enjoying the high bandwidth
and parallelism provided by both DRAM and ULL devices,
Wu et al. [6] proposed an aggressive virtual-address-space
prefetching solution to prefetch more pages with being aware
of the device characteristics (e.g., parallelism and response
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time) by modifying modern huge page management. While
the purpose of prefetching is to reduce the possibility of
page faults, the real concerns is whether the working set of
the next running process is properly maintained in the main
memory. Even though the past study [6], [7], [8], [9] proposed
to consider synchronous page-fault handling because of the
advantages of ULL storage devices over context-switching
overheads, the technical challenges in such a successful design
is what should be prefetched when a synchronous page fault
occurs? What should be done if some of the working set of
the next running process is still missing?

This work is motivated by the tremendous improvement
of the access latency of NVM-based storage. We explore
the demand page designs with synchronous page fault sup-
ports. In particular, we shall propose the essential strategies of
such designs in: 1) immediate synchronous page prefetching;
2) memory-demand-adaptive CPU scheduling; and 3) asyn-
chronous page prefetching. To improve the efficiency in
handling page faults, our immediate page prefetching design
smartly selects and prefetches an appropriate set of pages
with the considerations of page access behaviors during the
occurrence of each page fault. To improve the hit rate of
these prefetched pages, processes shall be scheduled with the
considerations of their memory demands. Our adaptive CPU
scheduling design shall satisfy the memory demands of differ-
ent processes by adjusting both the scheduling frequency and
time slices with the considerations of the fairness of using
CPU resources. Specifically, memory-intensive processes may
receive a longer time slice to fit (or reconstruct) their
large working sets in the memory and nonmemory-intensive
processes may be scheduled more frequently to refresh and
keep their working sets in the memory. Note that our design
will only deal with noninteractive processes, and the prior-
ity of interactive processes is, thus, not affected. To further
optimize the overall system performance by minimizing the
overhead in reconstructing working sets, our asynchronous
page prefetching design shall preload working sets belonging
to memory-intensive processes in the background while exe-
cuting nonmemory-intensive processes. The evaluation results
show that our strategy can improve the execution time by
12.33% and reduce 13.33% of page faults, compared to the
conventional demand paging strategy. We will show that our
strategy is fair where all processes have similar time on using
CPU resources.

The remainder of this article is organized as follows.
Section II elaborates the page fault handler and shows the
impact of the working set contention. Section III provides
the design concept and implementation of the adaptive syn-
chronous page fault (A-SPF) handler. Section IV evaluates the
proposed strategy. Finally, Section V concludes this article.

II. BACKGROUND, OBSERVATION, AND MOTIVATION

A. Background: Asynchronous and Synchronous Page
Fault Handler

To increase memory capacity with lower costs, virtual
memory management [15] is a common solution to extend

memory space by using storage devices and the demand pag-
ing strategy is used to move the data from storage to memory
devices when the data is required. However, it is inefficient
to let CPUs directly access the data stored in storage devices
because the latency gap between CPUs and storage devices
is huge. If the required data is not presented in the memory
devices, the CPU will automatically generate an exception,
called page fault. The operating system (OS) will then call the
demand paging strategy to run an asynchronous page fault han-
dler to manage the exception [16]. The top figure in Fig. 1(a)
illustrates the procedure flow of the asynchronous page fault
handler. Once raising a page fault, the CPU will switch from
the user mode to the kernel mode to run the asynchronous
page fault handler ( 1 ). The handler will first verify the legal-
ity (or permission) of the virtual address associating to the
page fault ( 2 ). If it is legal, the handler will then check
that the address points to the file system or the swap area.
Note that this work only focus on the case where the address
points to the swap area (or memory extension area). After
that, OS allocates a page on the memory device and config-
ures the direct memory access (DMA) controller to move the
data from the storage device to memory device ( 3 ). Avoid let-
ting CPU wait for the data movement synchronously, the OS
runs context switch to switch-in other processes decided by the
process scheduler ( 4 ) and the DMA will move the data asyn-
chronously in the background ( 5 ). Once the data is moved to
the memory device, the DMA interrupts the CPU to cleanup
the page fault and the OS will help to update the page table
entry.

Asynchronous page fault handler is widely adopted for
several decades, but it becomes inefficient when the latency
gap between CPUs and storage devices is greatly shrunk.
In recent years, the advance of manufacturing technologies
boosts the response time of storage devices from several mil-
liseconds (ms) to several microseconds (µs) [17], [18], [19],
where these devices are called ULL devices. For example,
the response time of both Samsung Z-NAND SSDs and Intel
Optane SSDs is around 3–10 µs [2], [3], [5]. However, as
reported by Intel and IBM, the overall context switch time
could be longer than 5–10 µs on a general-purpose machine
[7], [8], [9], and it could even be around 20 µs on an embed-
ding system [6]. Under this trend, it is inefficient to handle
page faults asynchronously by executing a context switch. At
this turning point, researchers from Intel and IBM advocate
to adopt the synchronous page fault handler [6], [7], [9] so
as to let CPUs directly enjoy the fast response time of ULL
devices. The bottom figure in Fig. 1(a) illustrates the pro-
cedure flow of the synchronous page fault handler. Once a
CPU raises a page fault, it will switch to the kernel mode
to run the synchronous page fault handler ( 1 ). The step of
checking page fault area is same as the asynchronous page
fault handler ( 2 ). After that, the CPU will directly move the
data by itself without the help from the DMA ( 3 ). Once
completing the movement, the mapping between virtual and
physical addresses will be established and updated to cor-
responding page table entries. Finally, the CPU will switch
back to the user mode and resume executing the original
process.
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(a) (b) (c)

Fig. 1. Mechanism of page fault handling. (a) Asynchronous and synchronous page fault handling. (b) Number of page faults versus time. (c) Page fault
distribution among the execution timeslice.

B. Observation: Working Set Contention

Switching the page fault handler from asynchronous to syn-
chronous is a start of renovating the demand paging strategy
to manage ULL storage devices. The legacy process sched-
uler, such as the completely fair scheduler (CFS) used in
Linux [20], is designed upon the asynchronous page fault han-
dler and, thus, cannot easily fit with the synchronous page
fault handler. There are usually two ways to trigger the pro-
cess scheduler to select and switch processes, that is the
context switching and execution timeout. Systems with the
synchronous page fault handler will not call context witching
and, thus, processes will only be rescheduled after they use up
their allocated time slices, as shown in the bottom figure in
Fig. 1(a). Thus, each process may occupy more memory space
than before and aggressively kick out working sets belong-
ing to other processes to storage devices, where we call this
issue “working set contention.” Even worse, the working set
contention becomes more serious when systems run memory-
extensive processes (e.g., graph processing [21], [22]), which
suffer from more page faults. Systems might need to recon-
struct working sets by moving pages kicked out by other
processes to the memory devices and, thus, suffer from inten-
sive page faults during the period where the contention is
serious.

To show the impact of the working set contention, we
build a in-house multiprogramming-based simulator to moni-
tor the number of page faults under adopting synchronous and
asynchronous page fault handling, respectively. In this exper-
iment, we run six processes with using the CFS to schedule
them. Specifically, they are Wrf from SPEC CPU� 2006 [23],
Blender, Xz, DeepSjeng from SPEC CPU� 2017 [24], a deep
learning framework (Tensorflow [25]), and a graph application
(Page Rank on Graphchi [26]). First, according to our results,
with using only asynchronous and only synchronous page fault
handling, the total execution time is 82.3 and 62.3 s, respec-
tively. That is, using the synchronous page fault handling can
save around 24.3% of the total execution time compared with
using the asynchronous page fault handling.

In addition to provide the overall execution time, we
take a closer look into a certain time range, as shown in
Fig. 1(b), where the y-axis presents the accumulated num-
ber of page faults in each time window (i.e., 33 ms) and
the x-axis indicates the system time. Using asynchronous

page fault handler shows relatively stable results in terms of
the number of page faults. The reason is that the most fre-
quently used pages belonging to each processes can be kept
in memory devices. On the other hand, if the system adopts
the synchronous page fault handler, the number of page faults
fluctuates severely over time. For example, we can observe a
high occurrence peak of page faults around 7.5 s, but there are
extremely few page faults between 7.8 and 7.9 s. The peak is
caused when processes are just scheduled to run but most of
their working sets are kicked out from memory devices due to
the working set contention. Their working sets can be recon-
structed after running for a while, and then the number of
occurrence page faults will greatly drop.

We also provide some break down results in Fig. 1(c) to
show the overhead on reconstructing working sets under using
synchronous page fault handler. In this experiment, time slices
allocated to each process are divided into three equal time
periods, head period, middle period, and end period. The y-axis
presents the accumulated page faults occured in each period. It
is obvious that all six processes suffer from more page faults
in the head period, where the process is just scheduled and
run. For some memory-intensive processes requiring longer
time to reconstruct their working sets still suffer from intensive
page faults in the middle period. The occurrence of page faults
significantly drops in the end period of all processes because
their working sets (or most frequently accessed pages) have
been reconstructed in memory devices.

C. Motivation

As suggested by Intel and IBM, switching the page fault
handler from asynchronous to synchronous becomes a trend
for the demand paging strategy to manage ULL storage
devices. With using synchronous page fault handler, processes
will not be switched out and will synchronously wait for
the completion of handling each page fault. In this case,
the system will suffer from the issue of working set con-
tention because each process may occupy more memory space
than before and aggressively kick out working sets belong-
ing to other processes to storage devices. This observation
motivates us to come up with a new demand paging strat-
egy to deal with the working set contention issue so as to
remove the peak of page faults and further reduce the occur-
rence of page faults. The technical challenge falls on how
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Fig. 2. A-SPF handler.

to propose a synchronous-page-based demand paging strategy
to: 1) identify and smartly prefetch (or preload) pages for
processes with different memory demands and 2) adaptively
schedule processes to satisfy their memory demands.

III. ADAPTIVE SYNCHRONOUS PAGE FAULT HANDLER

A. Overview

In this section, we will present our A-SPF handler to remove
the peak of page faults and reduce the occurrence of page
faults. As shown in Fig. 2, there are three main designs in
our A-SPF handler. We will elaborate the three designs in
Section III-B and also introduce on online predictor to classify
each process as memory intensive or nonmemory intensive in
Section III-C. While handling a page fault, our handler runs the
immediate synchronous page prefetching design (introduced in
Section III-B1) to carefully decide a few to-be-fetched pages
by considering page access behaviors. The page required by
the CPU and those to-be-fetched pages together can be moved
together with utilizing the high transmission bandwidth pro-
vided by the peripheral buses [6]. When a process uses up
all its time slices, our handler will run the adaptive memory-
demand CPU scheduling design (introduced in Section III-B2)
to work with the CPU scheduler to schedule the next process
with taking both memory demands and the fairness of CPU
occupation into consideration. If the running process is non-
memory intensive, our handler runs the asynchronous page
prefetching design (introduced in Section III-B3) to notify the
DMA to prefetch the working set belonging to the next-to-
be-run memory-intensive process. The rationale behind this
design is that nonmemory-intensive processes does not need
to handle page faults too often and, thus, idle buses can be used
for preloading the memory-intensive process’s working set.

B. Strategy for Prefetching and Adaptive CPU Scheduling

1) Immediate Page Prefetching Design: While handling a
page fault, our immediate page prefetching design fetches not
only the victim page causing the fault but also those pages
which caused faults in a close time period around the victim
page raised a fault last time. The rationale is that pages causing
faults in a close time period may probably be evicted together
and then raise page faults together the next time. For exam-
ple, graph processing and neural network applications usually
run multiple iterations to process the same input dataset and,
thus, may have similar memory access patterns across differ-
ent iterations. To keep track of pages causing faults in a close
time period, we propose a fault-aware prefetch set (as shown

Fig. 3. Fault-aware prefetch set.

in Fig. 3). Conceptually, our prefetch set maintains multiple
set_struct where each of them links a series of set_node rep-
resenting pages causing page faults in a short time period.
When dealing with the page fault, our prefetcher fetches the
pages from the head of the set_struct where the set_id is same
as the page causing the fault. Basically, there are three fields
for each set_node: list_entry, set_id, and gen_id. A list_entry
serves as the node of the doubly linked list and a set_id rep-
resents the set identifier associating with the corresponding
page. A gen_id stands for the generation id, which will be
introduced later. Note that the set_struct can be implemented
by extending the page structure in the Linux kernel. Here,
we will explain the details about the additional information
set_node based on the implementation of Linux kernel 5.7.
In the Linux kernel, each physical page in the system has an
associated struct page to keep track of the page state and the
related information. In our design, we propose to embed the
set_node structure in every struct page. The reason behind
this proposal is that we can locate the set_node efficiently by
simply running pointer calculation when the struct page is
extracted in the usual routine of the page fault handler. On
the other hand, we can get the corresponding page struct via
set_node in the same way.

When handling a page fault, our immediate page prefetching
design will run a fault-aware page grouping policy (as shown
in Algorithm 1) to judiciously assign a set_id to the page and
link the set_node to the corresponding set_struct. There are
two inputs in our group policy, that is the set_node of previous
page fault (prev) and the set_node of current page fault (curr).
There is no previous page fault before the first page fault of
a process, so we simply set the set_id of the curr set_node to
the NO_SET (steps 1 and 3). That is, the page does not belong
to any set_struct in the fault-aware prefetch set. In addition to
dealing with the first page fault, there are four possible cases
for any two pages causing consecutive faults. For the case that
both the prev and the curr have their own set_id, we will just
let two pages stay in its original set (steps 4 and 5). Note that a
set_id is valid if it is neither NULL nor the NO_SET . If both
the prev and the curr do not contain valid set_id, we will
create and assign a new set_id for both pages (steps 6–10).
The remaining two cases are very similar, one page has a
valid set_id but the other page does not. First we check if
there still exists any available space from the corresponding
set_struct (steps 11 and 14). If there is available space (i.e.,
not_full), our policy will group the two pages in to the same
set by assigning set_id to the one that does not belong to
any set (steps 12, 13, 15, and 16). Otherwise, our policy will
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Algorithm 1: Fault-Aware Page Grouping Policy
input : The page structure curr of current page fault
input : The page structure prev of previous page fault

1 if prev is NULL then
2 curr.set_id ← NO_SET;
3 return;

4 if valid(prev.set_id) and valid(curr.set_id) then
5 return;

6 if invalid(prev.set_id) and invalid(curr.set_id)
then

7 new_set_id = create_new_id();
8 prev.set_id ← new_set_id;
9 curr.set_id ← new_set_id;

10 return;

11 if valid(prev.set_id) and not_full(prev.set_id)
then

12 curr.set_id ← prev.set_id;
13 return;

14 else if valid(curr.set_id) and
not_full(curr.set_id) then

15 prev.set_id ← curr.set_id;
16 return;

assign the set_id before running a LRU-based replacement to
get available space from that set_struct.

After assigning a set_id to a set_node, the next step of our
immediate page prefetching design is to judiciously decide a
suitable position of the set_struct, that is to insert at the head or
the tail. Our design will insert the set_node to the head of the
corresponding set_struct only if the PG_ACCESSED bit (or
sometimes called PG_REFERENCED bit) [27] of the page is
set in the page table entry. Otherwise, the page will be inserted
to the tail of the fault-aware prefetch set and, thus, has a lower
priority to be prefetched. Note that the PG_ACCESSED bit is
set by the CPU when the corresponding page is accessed. If the
PG_ACCESSED bit is not set, it represents that the page was
prefetched to DRAM by our designs but it was then swapped
back to ULL devices without being accessed. In this case, we
can infer that the page might not be a frequently accessed
page, so it will be placed at the tail.

In addition to deciding the position in the set_struct, it is
also important to track the effectiveness of the prefetching hit
ratio in the same set. Our design maintains three additional
fields in every set_struct: 1) prefetch_count; 2) prefetch_miss;
and 3) gen_id. Prefetch_count records the number of pages
which are prefetched from the set_struct and the prefetch_miss
records the number of pages that are swapped back to the
ULL devices without being accessed after being prefetched.
The prefetch_miss will be increased when a page is evicted
and its PG_ACCESSED is not set. The prefetch accuracy can
be calculated by using prefetch_count and prefetc_miss. More
pages will be prefetched from the set_struct with high prefetch

(a) (b)

Fig. 4. Adaptive CPU scheduling design. (a) Memory-demand-aware CFS
tree. (b) Delay memory-intensive processes.

accuracy, that is prefetch_count but low prefetch_miss. If the
accuracy is too low, our design will mark all set_nodes in this
set_struct as outdated by increasing the gen_id maintained in
the set_struct. The design concept of the gen_id is to main-
tain the freshness (or generation) of set_nodes. The gen_id of
each set_node will be set to the gen_id of set_struct once the
set_node is updated. Our design will only prefetch the related
pages where their set_node have the same gen_id with the
set_struct.

2) Adaptive CPU Scheduling Design: The goal of our
adaptive CPU scheduling design is to remove page-fault peaks,
which are caused by frequently moving the evicted work-
ing sets belonging to memory-intensive processes from ULL
storage devices to the DRAM-based main memory. The key
concept of our design is to avoid scheduling two memory-
intensive processes continuously by prioritizing and running
nonmemory-intensive processes before running a memory-
intensive process. We first enable the conventional CPU
process scheduler to be aware of the memory-demand of each
process (i.e., memory intensive or not). Then, our design lets
nonmemory-intensive processes be scheduled to run more fre-
quent so as to refresh and keep their working sets in the
memory. On the other hand, our designs allocates longer time
slice to memory-intensive processes so as to minimize the
frequency of reconstructing their working sets. Processes can
be classified as memory-intensive or nonmemory-intensive at
offline by profiling their overall occurrence of page faults.
Note that we will introduce an online design to periodically
decide whether a running process is memory-intensive or not
in Section III-C.

Our adaptive CPU scheduling design is extended from
the CFS, which is the default process scheduler in the cur-
rent Linux kernel. The CFS decides the next to be executed
process by searching for the one with the least virtual run-
time. The virtual runtime of each process is updated based
on the priority and the time spent on using CPU resources.
For example, a high-priority process will get a small vir-
tual runtime and will get an even smaller virtual runtime if
it occupies CPU resources for a relatively short time. With
considering both the virtual runtime and memory demands,
we propose a memory-demand-aware CFS tree [as shown
in Fig. 4(a)], where nodes with black or white color rep-
resent a memory-intensive or nonmemory-intensive process,
respectively. Processes with smaller virtual runtime will be
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placed closer to the left-hand side. After the current running
process J uses up all its available time slices, the system runs
our design to schedule the next running process by picking
the leftmost process in the tree, and that is process A. After
that, our design needs to place the previous running process
J back to the tree according to its virtual runtime. If the
system follows the design of the original CFS, the process
J will very likely be placed in the rightmost of the tree, and
it will make two memory-intensive processes (i.e., H and J)
to stay in nearby. In this case, when process J is scheduled
the next time, most pages related to its working set might be
evicted and, thus, it shall spend more time on the working set
reconstruction, which causes immersive number of page faults.

To deal with this issue, we propose to schedule each
nonmemory-intensive process more frequent and then allocate
more time slices to memory-intensive processes. Under
our design, both nonmemory-intensive and memory-intensive
processes will eventually have similar time on using CPU
resources. Note that while running nonmemory-intensive
processes, we will run our asynchronous page prefetching
design to help preload the working set for the next running
memory-intensive processes in the background (more details
can be found in Section III-B3). Fig. 4(b) shows the details
of our design. After the memory-intensive process J uses up
all its time slices, our design temporarily places the memory-
intensive process J in the postpone queue when the rightmost
process in the tree is memory-intensive ( 1 ). The memory-
intensive process J will stay in the postpone queue until the
rightmost process in the tree becomes nonmemory intensive.
For example, after the nonmemory-intensive process A uses
up all its time slices, it will be placed to the rightmost position
in the tree ( 2 ), and then process J can be moved from the
postpone queue to the rightmost position in the tree ( 3 ).

Algorithm 2 is presented to show the details of the adaptive
CPU scheduling design. The main goal of this algorithm is
to add a memory-intensive process from the postpone queue
to the memory-demand-aware CFS tree and to decide a suit-
able virtual runtime for the memory-intensive process. The
algorithm is triggered every time when a nonmemory inten-
sive process p uses up its available time slices and is going
to be put back to the memory-demand-aware CFS tree. There
are three inputs, that is, the memory-demand-aware CFS tree
t, the postpone queue q, and the nonmemory-intensive pro-
cess p. The algorithm first checks the to-be-inserted position
of the nonmemory intensive process p. If p is not inserted
to the rightmost position, we cannot pop any process from
the postpone queue (steps 1–3). On the other hand, we pop
an memory-intensive process first from the postpone queue
(steps 8 and 9), if p has the largest virtual runtime than all
the others in the tree t and, thus, is going to be inserted to the
rightmost position. Then, our algorithm adjusts the virtual run-
time of the process first (step 11) by overwriting it with the p’s
virtual runtime plus one, so as to put p in front of first. Also
we need to record how much is the process first delayed (i.e.,
the delay_time) in the aspect of the virtual runtime (step 12).

In order to compensate the runtime for the memory-
intensive process which is postponed, our algorithm runs (1)
to decide how much of virtual runtime can the process really

Algorithm 2: Pop Policy of the Postpone Queue
input : Memory-demand-aware CFS tree t
input : Postpone queue q
input : Non memory-intensive process p that will be put

back to the tree t

// p is not inserted to the rightmost;
1 if p.vruntime < t.max_vruntime then
2 tree_insert(t, p);
3 return;

// Check if the postpone queue is empty;
4 if q.empty() then
5 tree_insert(t, p);
6 return;

7 else
8 first ← q.front();
9 q.pop();

10 old_vruntime ← first.vruntime;
11 first.vruntime← p.vruntime+ 1;
12 first.delay_time← first.vruntime− old_vruntime;
13 tree_insert(t, p);
14 tree_insert(t, first);
15 return;

receive. Our algorithm will adjust virtual runtime when a
memory-intensive process mp is on the leftmost position of the
memory-demand-aware CFS tree and it is going to be sched-
uled in. After shrinking the virtual runtime of a process, it
will receive longer time slices. Note that each process’s virtual
runtime also represents each process’s overall CPU resource
used time. CPU process scheduler (e.g., CFS) tends to level
every process’s virtual runtime, so as to let every process’s
has similar CPU resource used time. Thanks to this leveling
design, even if memory-intensive processes use up more CPU
resources in a short time, the overall CPU resource use time
allocated to each process will be similar eventually

mp.vruntime = mp.vruntime− mp.delay_time. (1)

Note that for serving processes requiring a low response
time, we suggest the users to set those processes as high-
priority processes by adjusting the nice value in the Linux
system. By applying our designs, high-priority memory-
intensive processes will be scheduled more frequent to meet
the requirement of low-response time and will also receive a
longer time slice to run as much as possible on the recon-
structed working set. However, we do not suggest to run
too many of processes with the characteristics of both low-
response time and memory intensive in the same system,
because they might aggressively occupy most of CPU and
memory resources. In our future works, we plan to explore the
system impacts and some management strategies when there
are several low-response-time and memory-intensive processes
running in the systems.

3) Asynchronous Page Prefetching Design: Our A-SPF
handler also comprises an asynchronous page prefetching
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Fig. 5. Management of the ULL pages (per process).

design to minimize the intensive page faults caused by recon-
structing the working set of a memory-intensive processes,
which usually have a larger working set than nonmemory-
intensive processes. Specifically, our design will identify pages
related to the working set of memory-intensive processes by
checking the page table and notify the DMA to preload the
working set during running nonmemory-intensive processes.
The rationale behind this design is that nonmemory-intensive
processes does not need to handle page faults too often and,
thus, idle buses can be used for preloading the working set
belonging to the next memory-intensive process.

Before diving deep into the detail of our asynchronous
page prefetching design, we will first introduce the memory
management of the hybrid DRAM-ULL system in modern
Linux systems, where ULL storage devices are configured as
the swap area. It is expensive to keep track of every memory
accesses and use an LRU policy to monitor the page access
behaviors. Linux systems use an approximate way to keep
track of the page access [16] by using two lists, that is, active
and inactive lists. Linux systems will run a kernel thread to
periodically scan referenced bits set in the page table,1 and move
all pages with their bits set between active and inactive list.

However, Linux mixes all pages belonging to different
processes in both active and inactive lists. Besides, Linux
pays more attention on tracking pages inside DRAM and,
thus, it is hard to identify the access behaviors (e.g., access
frequency) for those pages inside ULL storage devices (or the
swap area). In contrast to Linux’s tracking mechanism, we
propose a process-centric tracking mechanism to keep track of
each process’s pages in the ULL storage devices. As shown
in Fig. 5, we maintain two ULL page lists in the system and
named ULL inactive list and ULL reconstruct list for each
process, respectively. The ULL inactive list collect the pages
which are only in ULL storage devices and are probably not
accessed in the future. On the contrary, the ULL reconstruct
list holds the pages which are in ULL storage devices and are
accessed more recently. Under this design, pages in the ULL
reconstruct list might have higher probability to be deemed as
part of the working set.

When the process requests a page in a ULL storage device
but there is no enough DRAM space, our design will run
page swapping and tracking, where details are described in

1To access each virtual address, CPU will lookup the corresponding page
table entry to get its mapped physical address, and will automatically set
up the reference bit maintained in that page table entry.

Algorithm 3: Management of ULL Pages
input : The page page to be evicted from DRAM to

NVM
output: Page page is tracked by the proper list

1 swap_to_nvm(page) // Migrate from DRAM
to NVM;

2 p ← page.owner // Find the owner of the
page;

3 pte ← PTE(page) // Get the page table
entry;

4 if PG_ACCESSED(pte) is 0 then
5 p.insert_head_inactive(page);

6 else
7 p.insert_head_reconstruct(page);

Algorithm 3. Our design first swaps out the page from DRAM
to ULL storage devices so as to make available space on
DRAM (step 1). To decide a suitable list (i.e., ULL inactive
or ULL reconstruct) for maintaining the swapped page, we
should find out the process owning this page and the page
table entry (pte) assoicated with this page (steps 2 and 3).
According to the pte, we can retrieve the access information
about this page by examine the PG_ACCESSED bit. If this bit
is unset, it means this page is not accessed for a relative long
time. Hence, this page will be inserted to the ULL inactive
list (steps 4 and 5). On the contrary, if the PG_ACCESSED
bit is set, we categorize this page as one of the candidates in
the working set. In this case, this page will be inserted to the
head of the ULL reconstruct list (step 7) and, thus, it might
be possible be brought back to the DRAM while running the
asynchronous page prefetching design.

When running a nonmemory-intensive process, our asyn-
chronous page prefetching design will fetch the first nth pages
from the head of the ULL reconstruct list associated with
the next memory-intensive process by using DMA. The next
question is how many pages should be moved during the asyn-
chronous page prefetching design, that is how to set “n.” It is
common that processes might change their access behaviors
over time. For instance, the process may intensively access its
working set in some time, but may change its working set in
other time. To cope with this problem, our design dynamically
decides a suitable to-be-prefetched amount n. During running
each memory-intensive process, our design uses a variable
called prev_fault to record the accumulated number of page
faults. Note that prev_fault will be reset each time when the
process is scheduled to be run. The variable prev_fault will be
updated every time handling a page fault. It is reasonable to
infer that the working set of the process is destroyed severely
if prev_fault is high. In this case, if the process is memory
intensive, then our design tends to reconstruct more pages.

C. Online Memory-Demand Predictor

Every process will have several execution phases and also
their access behaviors vary from time to time. Instead of
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Algorithm 4: Online Memory-Demand Predictor
input : The period of the time window
input : The queue to store the timestamp record

// In the page fault handler;
1 do_page_fault (error_code, address):

// Get the timestamp of page fault;
2 timeval = gettimeofday(timeval);

// Push into the timestamp queue;
3 queue.push(timeval);

4 get_avg_fault_count ():
5 while (queue.front() < queue.now() - period)
6 queue.pop();
7 return queue.size() / period;

statically assigning the label of memory intensive or not to
each process, we propose an online memory-demand predic-
tor to find out processes that are relatively memory-intensive
compared with others by monitoring the occurrence history of
page faults. We observe that when a memory-intensive process
is executing, the system will suffer from lots of page faults.
Inspired by this observation, we can dynamically judge the
process status by monitoring the accumulated page faults in
each fixed period time window. As shown in Algorithm 4, we
retrieve the page fault timestamp in the very beginning of the
page fault handler (step 2), and then store the time information
in a FIFO queue (step 3). A timer is set for each process and
it will interrupt the system when the time meets the period
of the time window. Our predictor then calculates the average
page faults within the time window (or the period) (step 7).

We will maintain a global average page fault by periodi-
cally averaging all processes’ average page faults. If a process
suffers from average page faults higher than the global aver-
age page fault, our predictor will classify the process as a
memory-intensive process. Practically, we reserve a variable
called ts_fault within every process structure which counts the
number of page faults in the current time slice. When the pro-
cess is context switched by the other process, we will calculate
the average page faults in the previous time slice.

IV. EVALUATION

A. Experimental Setup

In this section, we will evaluate the proposed A-SPF handler
in both performance and fairness. Five methods are involved in
this evaluation. The first one is the baseline which adopts the
synchronous page fault handling as suggested by the IBM and
Intel [7], [9]. Rather than adopting the asynchronous page fault
handling, the baseline is more efficient because the response
time of the ULL storage devices is faster than performing context
switch. When the page fault occurs, the baseline will fetch the
fault page from the ULL storage devices to the main memory
(DRAM) without triggering the context switch. The second
one is the virtual prefetch (Virt_prefetch) [14] which adopts
the synchronous page fault handling as baseline. Besides, when
page fault occurs, the virtual prefetch also prefetches several
following virtual address pages based on the observation of

TABLE I
CONFIGURATION OF TRACES

strong spatial locality in virtual memory address space. The
third one is the aggressive virtual-address-space prefetching
(Agg_virtual) [6] which prefetch more pages with being aware
of the device characteristics (e.g., parallelism and response time)
by modifying modern huge page management. The other two
methods are A-SPF and A-SPF* which stand for the A-SPF
handler without and with online memory-demand predictor,
respectively. For all comparison methods, we use 4KB page
size and the LRU-based DRAM page replacement policy.

Before conducting the experiments, we collect the memory
traces by using the valgrind framework [28] which is a famous
binary instrumentation tool. In our trace-driven simulator, the
memory traces are given as input which will first go through
the 16-way set associative 8-MB CPU cache. Filtered by the
CPU cache, the remaining memory requests will then access
the DRAM pages and may fetch the page from the ULL stor-
age devices if a page fault occurs. The DRAM capacity is set
to fit the working set size of the process. Note that the def-
inition of the working set is that the size of the DRAM can
absorb more than 99% of the CPU accesses. The latency of
DRAM and ULL storage devices are configured by 50 ns [29]
and 3 µs [5], respectively. Note that modern ULL devices,
such as Intel Optane DC DIMM, usually manage write opera-
tions in an asynchronous way. Practically, devices usually have
a write buffer [30] so as to avoid write operations influenc-
ing the device response time. To simplify the discussions, we
assume the write response time is same as the read response
time (i.e., 3 µs).

In this experiment, we use CFS as our process scheduler.
Six traces collected from popular benchmarks are available for
the scheduler to choose from. Specifically, the traces are Wrf
from SPEC CPU� 2006 [23], Blender, Xz from SPEC CPU�
2017 [24], a deep learning framework (Tensorflow [25]), and
two graph applications (PR and Random Walk algorithm on
Graphchi [26]). Among the six processes, Page Rank and
Random Walk are memory-intensive. To further evaluate the
four methods, we select and mix the six traces to generate the
multiprogramming workloads (i.e., Mix3 to Mix6), as shown
in Table I. The CFS is modified from Linux Kernel 5.7 and
with sysctl_sched_min_granularity and sysctl_sched_latency
configured to 0.75 and 6 ms, respectively. The entire exper-
iment is running on the machine equipped with Intel Core
i7-7800X CPU and Linux Kernel 4.4.0. Every process is
set with the default nice value. The overhead of performing
context switch in the simulator is set to 5 µs [6], [8].

B. Experimental Results

1) Evaluation of Overall Performance: Our proposed A-
SPF handler adjusts the CFS to create opportunities for recon-
structing the working set. Also during the process execution,
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(a) (b) (c)

Fig. 6. Evaluation of overall performance. (a) Total execution time. (b) Context switch count. (c) ULL storage device access count.

we will collect the related pages so as to further reduce the
future page faults. With the proposed design, the system can
execute the processes more efficiently. As a result, we can
boost the progress and reduce the process execution time.
Fig. 6(a) shows the results of the total execution time, where
the y-axis is the total execution time normalized to the baseline
approach. For the three processes workload (Mix3), A-SPF*,
A-SPF, Virt_prefetch, and Agg_virtual can improve the total
execution time by 12.33%, 8.93%, 5.42%, and 1.36% com-
pared with the baseline. With consideration of asynchronous
page prefetching design and the adaptive CPU scheduling
design, the system can switch between the processes more
smoothly. For the six processes workload (Mix6), A-SPF*,
A-SPF, Virt_prefetch, and Agg_virtual can improve the total
execution time by 11.45%, 9.88%, 7.16%, and 3.92% com-
pared with the baseline, respectively. The results clearly
show that A-SPF* outperforms among five methods for these
workloads. With online memory-demand predictor, A-SPF*
can identify the memory-intensive processes accurately and,
thus, adaptively adjust the scheduler to asynchronously recon-
struct working sets. As a result, we can find that A-SPF* is
more powerful than A-SPF in total execution time. Note that
Agg_virtual does not perform well as expected. This is because
some processes such as Page Rank may not have strong spa-
tial locality in wide range of the virtual-address space. As a
result, some prefetching operations seem to be ineffective and
even waste the memory space.

Fig. 6(b) provides the details about number of context
switch for each approach, where the y-axis is the con-
text switch count normalized to the baseline approach.
For the three processes workload (Mix3), A-SPF*, A-SPF,
Virt_prefetch, and Agg_virtual can reduce the total number
of context switches by 41.70%, 36.95%, 21.35%, and 22.03%
compared with the baseline, respectively. We can conclude this
result from two aspects. More effective approaches can help
the system finish the entire execution in less time. As a result,
the number of total context switch is decreased. The other
reason is that the proposed A-SPF* approach tends to give
a longer CPU time to the memory-intensive processes when
they are once executed and, thus, also decrease the number of
context switches.

In the ULL storage-based memory extension system, we
want every memory request can be served by the DRAM
without any ULL access. However, due to the limited memory

resources, it is impossible to keep everything in DRAM. As
a result, it is critical to reduce the number of ULL access
count so as to improve the system performance. A-SPF*, A-
SPF, Virt_prefetch, and Agg_virtual all take this into account
and adopt different strategies. Fig. 6(c) provides the details
about number of ULL storage device access account for each
approach, where the y-axis is the access count normalized to
the baseline approach. For the six processes workload (Mix6),
A-SPF*, A-SPF, Virt_prefetch, and Agg_virtual can reduce the
total number of ULL accesses by 13.33%, 11.61%, 8.62%,
and 4.98% compared with the baseline, respectively. With the
asynchronous page prefetching design, A-SPF* can prevent the
future page faults in advance. Also, when the access behav-
ior is weak in virtual memory locality, the immediate page
prefetching in A-SPF* performs better than the Virt_prefetch
by collecting the related page set.

In the fault-aware prefetch set design, we collect the related
page set together so as to utilize the relationship information to
further alleviate future page faults. In this experiment, we also
tag the pages that are prefetched by the fault-aware prefetch
design and analyze the efficacy of the page grouping policy.
Once a page with a prefetch tag is swapped back to the ULL
device, we will examine the PG_ACCESSED bit. If it has not
been accessed since it was prefetched, we would increment
the fail counter of the algorithm. Otherwise, we will count
it as successful set prefetch operation. The results show that
54.54% prefetch operations of the page grouping policy are
effective under the scenario of running six traces (i.e., Mix6).

Note that we configure DRAM capacity to hold the min-
imum working set size among all processes. Specifically,
DRAM is set to 200 MB to fit the working set of the
Tensorflow process. As a result, we can know that even under
the resource-constrained condition, the proposed design can
effectively improve the overall system performance. With the
help of the Online Memory-Demand Predictor, the system can
identify the processes with stronger memory-demand and then
dynamically adjust the system resources.

2) Evaluation of Performance on Different ULL Response
Time: Here, we will explore the impact of different ULL stor-
age device response time. Six processes workload (Mix6) is
used. We evaluate the four approaches with different ULL
response time range from 3 µs to 7 µs. The result is shown in
Fig. 7, where the y-axis is the total execution time normalized
to the baseline approach and x-axis is the ULL device response

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:46 UTC from IEEE Xplore.  Restrictions apply. 



3800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 7. Evaluation of performance on different ULL response times (us).

Fig. 8. Evaluation of performance on different numbers of prefetched pages.

time in µs. For the ULL response time ranging from 7 µs
to 3 µs, A-SPF* improves the total execution time 14.29%,
13.88%, 13.35%, 12.99%, 11.45% compared with baseline
approach, respectively. We can see that as the ULL device
is faster, the improvement will become lesser. We can observe
the same tendency for the Virt_prefetch with 7.61%, 7.52%,
7.47%, 7.57%, 7.16% improvement over baseline approach
for 7 µs to 3 µs ULL response time. The reason of this ten-
dency is that the time saved by page prefetching decreases
gradually when the access latency gap between memory and
storage devices keeps closing.

3) Evaluation of Performance on Different Number of
Prefetched Pages: Data prefetching can reduce the number
of page faults, but how can we determine the number of
prefetched page in the page fault handler. We conduct the
experiments for different number of prefetched page. The
result is shown in Fig. 8, where the y-axis is the total exe-
cution time normalized to the baseline approach and x-axis
is the number of prefetched pages in the page fault handler.
When the prefetched page is increased from 2 to 10, the
Virt_prefetch improves the total execution time 6.68%, 7.16%,
7.08%, 6.26%, 5.70% compared with baseline approach,
respectively. It is interesting that the Virt_prefetch does not
gain the performance improvement when the prefetched count
is increased from 4 to 10. The main reason is when we prefetch
lots of pages, same DRAM pages may be replaced and, thus,
cancel out the benefits of the prefetching. On the other hand,
the A-SPF* has 10.19%, 11.45%, 12.59%, 12.65%, 12.58%

improvement for 2 to 10 prefetched page. The number of
prefetched page in A-SPF* depends on the accuracy of the
fault-aware prefetch set and the previous history. So it will not
prefetch as many pages as Virt_prefech and, thus, can still have
competitive performance improvement. Generally, the number
of prefetched pages is highly proportional to the energy con-
sumption, where moving each page consumes energy. Thus,
we also measure the energy consumption and show that the
A-SPF* consume lower energy than Virt_prefech. Specifically,
based on our measurement, A-SPF* consumes 47.6% less
power than the Virt_prefetch for the default configuration.

4) Evaluation of Fairness: The proposed A-SPF handler
adjusts the CFS so as to create opportunities for reconstructing
the working set. However, the adjustment of the scheduler in
the adaptive CPU scheduling design may affect the fairness [31]
between processes, CPU resources may not be evenly distributed
anymore. Considering this issue, we try to even the distribu-
tion of CPU time among all the processes (described in the
end of Section III-B2) by compensating the memory-intensive
processes. In this section, we will analyze the distribution of
CPU resources. Two approaches will be evaluated together:
1) baseline and 2) A-SPF*. Note that without any modification
to the CFS, the baseline can achieve the best fairness. We
evaluate the fairness by running with two memory-intensive
(PR stands for Page Rank and RW stands for Random Walk)
and one nonmemory intensive (Wrf) traces in the system and
observe the distribution of CPU time. The asymmetric number
between memory-intensive and nonmemory intensive traces
can enlarge the unfairness between each process. We can see
the evaluation results on CPU time distribution in Fig. 9, where
Fig. 9(a) and (b) shows the CPU time distribution over 5% and
10% execution time, respectively. The x-axis is three processes
and the y-axis indicates the percentage of CPU time occu-
pied by the corresponding process. For 5% execution time
[Fig. 9(a)], PR, RW, and Wrf will gain 33.45%, 33.13%, and
33.42% CPU time in baseline approach, which is very close to
33.33%. With using A-SPF*, the ratio of CPU time consumed
by three traces (i.e., PR, RW, and Wrf) is 33.40%, 32.06%, and
34.54%, respectively. It is obvious that the ratio of CPU time
consumed by the three traces is close to each others, which
means the CPU resource is fairly distributed to each trace.
Besides, the CPU resource distribution under running A-SPF*
is very close to that of running the baseline (or the CFS),
which is designed to fairly distribute CPU resources. As the
system executes for longer time, the A-SPF* can distribute the
CPU resources more evenly among all processes. As shown
in Fig. 9(b) where systems run for around 10% of execution
time, with using A-SPF*, the ratio of CPU time consumed by
three traces is 32.73%, 33.39%, and 33.88%, respectively. The
CPU resource distribution among three traces becomes closer
to 33.33%. That is, running the system with A-SPF* for 10%
of execution time shows a better fairness result than that of
running only for 5% of execution time.

C. Analysis of Management Overhead

1) Analysis of Computation Overhead: The proposed A-
SPF handler comprises three main designs: 1) the immediate
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(a)

(b)

Fig. 9. Evaluation on CPU time distribution. (a) CPU time distribution of
5% execution time. (b) CPU time distribution of 10% execution time.

page prefetching design; 2) the adaptive CPU scheduling
design; and 3) the asynchronous page prefetching design.
Among these designs, we use the linked list implementation
to flexibly store the required information. For the immediate
page prefetching design, the OS will find the corresponding
struct page and locate the embedded set_node in the struct
page which can all be finished in constant time. After that, we
will prefetch from the head of the linked list which also incurs
extra constant time overhead to find the set_node and the struct
page. In the fault-aware page grouping policy, the most com-
plicated logic is to assign the correct set_id which can be
implemented within a constant time overhead by only a few
branch instructions. In the adaptive CPU scheduling design,
we maintain the postpone queue to delay the scheduling of the
memory-intensive process, the virtual runtime calculation can
also be done within constant time. The most time consuming
part is the red–black tree insertion which will require logarith-
mic time complexity. In the asynchronous page prefetching
design, we will reconstruct the page from the head of the
reconstruct list which is also a constant time operation. The
dominated operation is to identify whether the next process is
memory intensive. Thanks to the delicate design of the red–
black tree which caches the left most node of the tree. As
a result, we can identify the property of the next process in
constant time too.

2) Analysis of Storage Overhead: We have introduced sev-
eral data structures to maintain the related information. In
the immediate page prefetching, each set_struct consists of
a set_id (uint16_t), a gen_id (uint16_t), a prefetch_count
(uint32_t), a prefetch_miss (uint32_t), and a pointer of the
doubly linked list (8 bytes). In short, each set_struct requires
20-bytes storage overhead. We also use set_node to record the
page information and it consists of a set_id (uint16_t), a gen_id
(uint16_t), and a list_entry (8 bytes). Thus, each set_node is
12 bytes. In order to enable the adaptive CPU scheduling
design, every process will need extra information including
a delay_time (uint64_t), an is_intense (1 bit), a prev_timeslice
(uint64_t), and a prev_fault (uint64_t). Among these fields,
prev_timeslice is the previous timeslice period of the process,
and prev_fault represents the number of page faults occurred
during previous process timeslice period. In summary, there
will be 25-bytes storage overhead for every process. Apart
from that, there is also a postpone queue which is a dynamic
array. Every element in the queue is just a pointer (uint32_t).
For the asynchronous page prefetching design, it relies on a
doubly linked list to track the information. Every node in the
reconstruct and inactive list represents the corresponding page
and contains extra fields such as a list_entry (8 bytes).

V. CONCLUSION

The advance of NVM technology has introduced ULL stor-
age devices and the response time of ULL storage devices is
now faster than conducting the context switch. Researchers
from Intel and IBM suggest to redefine the ways in han-
dling the main memory and storage by switching the page
fault handler from asynchronous to synchronous. However, by
synchronously handling page faults, the process may suffer
from the working set contention issue. That is, processes might
occupy more memory space than before and aggressively kick
out other processes’ working sets. To deal with the working
set contention issue, this work proposes an A-SPF handler.
Results showed that our strategy can save 12.33% of the total
execution time and reduce 13.33% of page faults, compared
to the conventional demand paging strategy with nearly no
sacrificing of process fairness.
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