
3674 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

GEAR: Graph-Evolving Aware Data Arranger to
Enhance the Performance of Traversing Evolving

Graphs on SCM
Wen-Yi Wang, Chun-Feng Wu , Member, IEEE, Yun-Chih Chen , Member, IEEE,

Tei-Wei Kuo , Fellow, IEEE, and Yuan-Hao Chang , Fellow, IEEE

Abstract—In the era of big data, social network services
continuously modify social connections, leading to dynamic and
evolving graph data structures. These evolving graphs, vital
for representing social relationships, pose significant memory
challenges as they grow over time. To address this, storage-class-
memory (SCM) emerges as a cost-effective solution alongside
DRAM. However, contemporary graph evolution processes often
scatter neighboring vertices across multiple pages, causing weak
graph spatial locality and high-TLB misses during traversals.
This article introduces SCM-Based graph-evolving aware data
arranger (GEAR), a joint management middleware optimizing
data arrangement on SCMs to enhance graph traversal effi-
ciency. SCM-based GEAR comprises multilevel page allocation,
locality-aware data placement, and dual-granularity wear lev-
eling techniques. Multilevel page allocation prevents scattering
of neighbor vertices relying on managing each page in a finer-
granularity, while locality-aware data placement reserves space
for future updates, maintaining strong graph spatial locality. The
dual-granularity wear leveler evenly distributes updates across
SCM pages with considering graph traversing characteristics.
Evaluation results demonstrate SCM-based GEAR’s superiority,
achieving 23% to 70% reduction in traversal time compared to
state-of-the-art frameworks.

Index Terms—Checkpointing, evolving graph, graph, HW/SW
Co-design, memory management, middleware, non-volatile
memory, system software.
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I. INTRODUCTION

SOCIAL network services utilize graph data structures to
manage the connections between users. The relationship is

highly dynamic, with connections added, updated, or removed
at all times [1], [2]. As a result, the underlying graph data
structures are dynamic and change with time. These dynamic
graphs are known as evolving graphs: the connection between
any two users may not be static all the time [3]. As evolving
graphs grow over time, so does the system’s memory demand.
Storage-class memory (SCM) [4], [5], [6], [7] can augment
DRAM to provide larger memory space at a lower price,
alleviating the need to constantly add more DRAM to meet
memory demand. Recent works in graph processing propose to
buffer graph updates in RAM before flushing them to SCMs in
batch [8], [9]. Our investigation reveals that such batch updates
can be inefficient, with vertice updates spread across multiple
batches and neighboring vertices spread across multiple pages.
As a result, this characteristic leads to weak graph spatial
locality, which may result in high-translation lookaside buffer
(TLB) misses during subsequent graph traversals. To improve
graph traversing performance, this work proposes a joint
management middleware that take graph spatial locality into
account in the data placement policy on SCMs.

Major social network providers, such as Google [10],
Meta [11], and JingDong (JD.com) [2], have adopted graph
processing algorithms, such as page rank and graph neural
networks, to extract information from Web pages and social
networks. A distributed system is one option for storing
all graph data in memory. However, building an efficient
distributed system remains a challenge, especially for small
companies, due to high deployment and maintenance costs,
load balancing, and fault tolerance. Out-of-core systems are
alternative architectures that run graph processing on a sin-
gle consumer-level machine, supplementing limited memory
capacity with storage devices. Graph processing system based
on out-of-core architecture have gained significant attention in
the community [12], [13]. GraphChi [14] proposed breaking
down large graphs into small parts and storing them in storage
devices. Several works (e.g., FlashGraph [15], Graphene [16],
and GraphSSD [17]) have proposed to carefully manage
Solid-State Drives by adopting some I/O request merging
or sophisticated buffering approaches with considering graph
access behaviors. In contrast to processing static graphs,
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these systems need a new data structure to track the most
recent version of each vertex and edge in evolving graphs.
Section II will provide a comprehensive overview of cutting-
edge solutions and challenges.

However, we observed that state-of-the-art evolving graph
frameworks have poor graph spatial locality, which makes
them inefficient in executing graph traversal algorithms. We
proposed a joint management middleware between graph-
evolving processing and memory devices (including both
DRAM and SCMs), called the SCM-Based Graph-Evolving
Aware Data ArrangeR (GEAR). Our goal is to arrange and
write the evolving graph data into SCMs while achieving
strong graph spatial locality. The SCM-Based GEAR has three
major components: 1) multilevel page allocation; 2) locality-
aware data placement; and 3) a dual-granularity wear leveler.

1) The main idea behind multilevel page allocation is
to prevent graph-evolving processes from scattering
neighbor vertices across different pages. Technically, the
system maintains multilevel size subpages and assigns
a suitable-size subpage to accommodate all neighbors
associated with each vertex, taking into account their
number.

2) The locality-aware data placement reserves an unused
area in each subpage for future graph updates to the cor-
responding vertex, ensuring strong graph spatial locality
even as the graph evolves over time.

3) The dual-granularity wear leveler, in conjunction with
our page allocation, distributes graph updates evenly
across all memory pages on SCM during graph evo-
lution. The evaluation results show that, compared to
the state-of-the-art frameworks, our SCM-based GEAR
can save the total execution time by 23%–70% when
traversing an evolving graph.

The remainder of this article is organized as follows.
Section II elaborates the graph evolving processes and shows
the impact of the weak graph spatial locality on the graph
traversal time. Section III provides the design concept and
implementation of the SCM-based GEAR. Section IV evalu-
ates the proposed strategy. Finally, Section V concludes this
article.

II. BACKGROUND, OBSERVATION, AND MOTIVATION

A. Background

1) Evolving Graphs: Graphs are commonly used to repre-
sent the relationship between data points. In general, each node
in a graph represents a data point, and the edge that connects
two data points (or nodes) records their relationship. A graph
is considered a evolving graph if its layout or edge weights
change over time. Social networks, for example, are constantly
evolving [18], [19] as new users join and connections are
established frequently. To analyze an evolving graph over
time, evolving graph processing systems take snapshots on
a regular basis [20]. However, systems storing multiple full
snapshots1 may waste huge memory space to accommodate
redundant data. Modern graph processing frameworks, like

1A full snapshot is a snapshot, which contains the entire graph layout in
the moment of taking snapshot.

Fig. 1. Data structure for evolving graphs.

LLAMA [21], use delta snapshot [22] to save memory
space by storing only the updated nodes or edges in each
snapshot. In other words, each delta snapshot only contains
graph updates (e.g., insertion, modification, and deletion) that
occurred after the previous delta snapshot, so all snapshots
must be read to traverse the entire graph. With support for
delta snapshots, evolving graph processing systems can not
only provide version control but also efficiently analyze graphs
in the time domain. In the rest of this article, “delta snapshot”
and “snapshot” are used interchangeably.

An evolving graph is typically stored in the format of an
adjacency list [23], which is also applied to static graphs. An
adjacency list maintains a linked list for each vertex to chain all
correlated neighbors, and all updates from the same snapshot
are grouped in an array [20]. Its structures enables efficient
traversal all neighbors of any vertex in the adjacency list.
Fig. 1 shows an evolving graph and its adjacency list format.
The graph evolves to its third snapshot. The first snapshot
includes four insertions (i.e., (1, 3), (0, 3), (0, 1), and (0, 2),
with (1, 3) representing the newly inserted edge connecting
vertex 1 and 3. The second snapshot contains three insertions,
while the third snapshot has two insertions and two deletions.
It is worth noting that, in the evolving graph framework,
deleting an edge is typically translated into out-place updates.
Rather than removing the deleted edge directly, we create a
new edge with a negative sign. Out-place update not only
lowers the cost of fine-grained memory modification, but it
also makes it simple to go back to a previous version of the
evolving graph.

2) Storage Class Memory: As the graph continues to
evolve over time, the sheer volume of data within the graph
structure increases proportionally, leading to more frequent
and intensive data movements within systems. This growth in
data size poses significant challenges for memory management
and access efficiency [24]. Fortunately, recent advancements
in manufacturing technologies, such as 3-D X-point [25],
[26], [27], [28] and ultralow-latency NAND Flash [29], [30],
[31], [32]), have paved the way for the emergence of
SCM [33], [34]. These innovative memory solutions offer a
hybrid approach, combining the speed and byte-addressable
access of DRAM with the nonvolatility and higher density
of traditional storage devices. Several products and proto-
types have emerged to capitalize on these advancements,
including Intel R© Optane

TM
Persistent Memory [35] and HPE

NVDIMM [6], [36].
SCM represents a new category of memory devices that

combine the desirable characteristics of both DRAM and
traditional storage devices. These memory devices offer
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byte-addressable access granularity with 64-B cacheline
accesses, ensuring efficient data retrieval and manipulation.
Additionally, SCMs feature nonvolatility, allowing data to be
retained even when power is removed, akin to storage devices.
Moreover, SCMs boast lower-unit costs (price/GB) compared
to DRAM and higher-storage density, providing up to 512-GB
per DIMM, making them an attractive solution for memory-
intensive applications [37].

Moreover, the integration of SCM into computing systems
has been further facilitated by its diverse connectivity options.
In addition to occupying traditional DIMM channels, SCM can
also be connected via PCIe channels, leveraging the compute
express link (CXL) interconnection2 [38], [39], [40], [41].
This flexibility in connectivity enables SCM to be seamlessly
integrated into existing architectures, offering greater scalabil-
ity and adaptability to evolving memory requirements. With
SCM’s ability to bridge the gap between DRAM and storage,
computing systems can achieve enhanced performance and
efficiency in handling the growing demands of evolving graph
structures and other data-intensive workloads.

However, due to their slower performance and shorter
lifespan relative to DRAM, SCMs are typically utilized
as extensions of DRAM rather than as direct replace-
ments [42], [43]. In this hierarchical memory architecture,
frequently accessed data (such as inner nodes in tree-data
structure) resides in DRAM to leverage its faster access times
and lower latency [42]. Conversely, less frequently accessed
or large-scale data (such as leaf nodes in tree-data structure)
that exceeds DRAM capacity is stored in SCMs, allowing
for efficient use of available memory resources. One notable
advantage of SCMs is their direct accessibility by CPUs,
enabling seamless data transfer from SCMs directly into the
CPU cache in cacheline-sized chunks. This direct access
capability, discussed extensively in prior research [4], [44],
allows for efficient utilization of SCMs alongside DRAM,
mitigating the performance impact of slower SCM access
times by leveraging CPU cache mechanisms. As a result, SCM
adoption offers promising opportunities for improving memory
performance and scalability in modern computing systems.

B. Observation

1) Delta Snapshots Break Graph Spatial Locality: Delta
snapshots can generate multiple data versions for the same
graph, significantly increasing memory usage and necessi-
tating larger memory devices. Another major problem with
delta snapshots is a loss of spatial locality. As more snap-
shots are generated, neighboring vertices are scattered across
multiple memory pages, significantly degrading graph traversal
performance. In many graph processing algorithms, when a
vertex is accessed, all of its 1-hop neighbor vertices are also
accessed. Because these neighbors are updated at different
times, they are stored on separate memory pages. Many
graph processing frameworks write snapshots to pages in
chronological order (i.e., by creation time). As a result, vertices

2CXL is a high-speed interconnect technology that facilitates efficient
communication between CPUs and accelerators, including memory devices,
to enable heterogeneous computing architectures.

Fig. 2. Storing evolving graph on memory.

physically stored together may be logically distant from one
another. Consequently, compared to ideal placement, more
pages have to be read in a graph traversal to access each
vertex’s neighbors, resulting in extra page table walks and TLB
accesses.

Fig. 2 shows an example to illustrate the impact of graph
spatial locality. Each rectangle represents a 4-kB page, where
different gray levels indicate different snapshots. For example,
the darkest part implies all graph updates belonging to the
third snapshot. Besides, adj stands for an adjacency list, where
V0’s adj means the adjacency list of V0. Assuming that
neighbor vertices belonging to V3 evolves during different
time period (e.g., t1, t2, and t3), those updated neighbor
vertices are scattered across three snapshots. In this case, it
requires 5 page accesses (marked by red lines) to explore
V3’s neighbors, where each page access might cause 1 TLB
access and at most 4 memory accesses for walking page
tables. Even worse, the performance degradation becomes
more serious where systems shall explore most of the vertices
for traversing a graph, instead of exploring only one vertex.
Although some frameworks, such as LLAMA, can alleviate
the performance impact by periodically merging multiple snap-
shots, the performance of graph traversing becomes unstable
and fluctuates seriously. The reason is that, the graph traversing
reaches best performance right after running snapshots merg-
ing, but it becomes worse until triggering the next merging.

Fig. 2 demonstrates the impact of graph spatial locality.
Each rectangle represents a 4-kB page, and the different
gray levels indicate different snapshots. For example, the
darkest part denotes all graph updates from the third snapshot.
Furthermore, “adj” stands for an adjacency list, and “V0’s adj”
denotes V0’s adjacency list. Assuming that neighbor vertices
in V3 evolve over different time periods (e.g., t1, t2, and
t3), the updated neighbor vertices are distributed across three
snapshots. In this case, it takes 5 page accesses (marked by
red lines) to traverse V3’s neighbors, with each page access
potentially resulting in 1 TLB access and up to 4 memory
accesses for walking page tables. Even worse, performance
degradation worsens when systems must traverse all of the
vertices in order to traverse a graph, rather than just one.
Although some frameworks, such as LLAMA, can mitigate the
performance impact by periodically merging multiple snap-
shots, graph traversal performance still fluctuates significantly:
traversal performs best immediately after a snapshot merge,
but gradually degrades thereafter.
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Fig. 3. Weak graph spatial locality hurts performance (Dataset: Friendster). (a) Execution time. (b) TLB miss rate. (c) Page utilization.

2) Performance Impact Under Weak Graph Spatial
Locality: We conducted a series of experiments to validate
our findings. Fig. 3 shows the performance results. We use
LLAMA [21] as an example, which is a representative
evolving graph framework. Without loss of generality, the
LLAMA merge frequency is set to every 500 snapshots. To
simulate graph evolution, we divide a large graph, Friendster,3

into 10 000 snapshots, and the graph will eventually evolve
(or update) 10 000 times. We evaluated graph traversal
performance by running the Dijkstra algorithm every 100 snap-
shots using two approaches. The first approach is LLAMA,
which stores snapshots in SCMs. The second approach is
called “optimal.” It merges all snapshots in DRAM and
immediately rewrite a new graph to SCMs. This approach has
the strongest spatial locality but can suffer from high-update
overhead.

Fig. 3(a) and (b) show evaluation results for overall exe-
cution time and TLB miss rate, respectively. The x-axis in
both figures represents the number of archived snapshots.
Fig. 3(a) shows that the placement issue may significantly
affect the execution time, with the system adopting LLAMA
spending 5 times more execution time than the system running
the optimal approach. Running LLAMA breaks graph spatial
locality, causing the CPU to read extra pages, resulting in
high-TLB misses and frequent page table walks, as shown in
Fig. 3(b). Furthermore, it is obvious that the performance of
running graph traversal is unstable when using LLAMA. This
unstable performance will degrade the user experience. Even
worse, frequently merging snapshots may result in frequent
access to SCMs, which consumes additional energy.

The above experiment shows that weak graph spatial local-
ity can reduce page utilization. The page utilization of each
vertex is defined as the ideal memory size occupied by the
vertex’s neighbors divided by the memory size occupied by
the vertex’s neighbors. For example, the total size of V1’s
adjacency list (i.e., all of V1’s neighbors) is less than the
size of one page, requiring only one memory page to store it.
In reality, V1’s page utilization is less than 10% because its
neighbors are scattered across 10 memory pages.

Fig. 3(c) shows page utilization for a system with varying
snapshots. The x-axis shows the number of snapshots owned
by the system, while the y-axis shows page utilization across
all vertices. To better demonstrate the trend, we divide page
utilization into three categories: 1) 0%–40%; 2) 41%–90%;

3The dataset is from Stanford network analysis project (SNAP) [45].

and 3) 91%–100%. As the system generates more snapshots,
the number of vertices with page utilization between 91% and
100% decreases significantly.

C. Motivation

This work is strongly motivated by the need to improve
the traversing performance for the SCM-based evolving graph
systems by keeping strong graph spatial locality for all
vertices. We propose a joint management middleware that
performs both memory allocations and data placements for
evolving data while taking into account graph spatial locality.
The major technical challenges are 1) how to maintain strong
graph spatial locality while the graph evolves, and 2) how to
intelligently place and rewrite data on SCMs without causing
excessive energy consumption.

III. SCM-BASED GRAPH-EVOLVING AWARE

DATA ARRANGER

A. Overview

This section introduces our SCM-Based GEAR, designed
to maintain strong graph spatial locality by consolidating
all neighbors of each vertex on the SCM while minimiz-
ing energy consumption. Technically, SCM-based GEAR
serves as middleware between the graph application and
the SCM device, bridging the information gap between
them. Implementing GEAR as middleware not only facilitates
information exchange but also ensures high compatibility,
avoiding the need to modify either the application or the
devices. Fig. 4 provides an overview of our design, which
comprises four key components: 1) multilevel page allocation;
2) locality-aware data placement; 3) dual-granularity wear
leveler; and 4) graph updates accumulation.

Our multilevel page allocation component partitions and
allocates SCM memory areas to store all neighbors associated
with each vertex. Each vertex’s degree (the number of the
vertex’s edges) determines the size of its allocated SCM
memory area. Furthermore, our locality-aware data placement
mechanism ensures that all evolved graph data (i.e., newly
updated edges) related to the same source vertex are stored
in the corresponding SCM memory area, thereby preserving
strong graph spatial locality. Additionally, our dual-granularity
wear leveler collaborates with our page allocation strategy to
evenly distribute graph updates across all memory pages in
SCM during graph evolution.
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Fig. 4. System architecture.

Fig. 5. Example of multilevel page allocation.

Finally, the graph updates accumulation policy buffers
incoming graph updates in DRAM. It employs a data structure
called an edge log array to facilitate quick querying of these
new edges without traversing the entire graph. Because SCM
has a higher-write latency than DRAM, our design prioritizes
staging new graph updates in DRAM for quick ingestion.
The buffered data are subsequently transferred to SCMs in
batches, referred to as snapshots. The edge log array maintains
incoming graph updates in a first-in-first-out (FIFO) manner,
with each update containing three fields: 1) the source vertex;
2) the destination vertex; and 3) the edge weight between them.
It is worth noting that such stage-and-flush design is widely
used in many graph systems, so we will not go into specific
design details.

B. Multilevel Page Allocation

SCM-based GEAR aims to maintain strong graph spatial
locality by consolidating all neighbors belonging to each
vertex within contiguous memory areas on the SCM. In real-
world graphs, hub vertices, which are those with extremely
high degrees, have significantly more neighbors than nonhub
vertices. Celebrities in social networks are an excellent exam-
ple of a hub vertice: their graph neighbors can be hundreds,
if not thousands, of times more than regular users (nonhub
vertices).

Traditionally, most systems allocate memory areas (or
pages) of 4 kB. To reduce maintenance costs of graphs
evolution, it is common to allocate a 4-kB page for each hub
or nonhub vertex. However, this allocation results in low-page
utilization. For example, assume that storing one neighbor

edge requires approximately 8 bytes (including the index of
the neighbor vertex and the edge weight). Then, storing a
nonhub vertex with 100 neighbor edges would only require
800 bytes, well below the 4-kB capacity. Even if the combined
neighbors of some hub vertices can fill a 4-kB page, the
memory requirement might expand over time and no longer fit
within the 4-kB memory area as the graph evolves. A simple
solution would be to divide a 4-kB page into smaller sizes,
but this would require significant maintenance overhead and
result in severe space fragmentation.

The multilevel page allocation strategy in SCM-based
GEAR relies on two fundamental principles. First, it aims
to minimize maintenance overhead by organizing memory
areas into sizes aligned with seven predefined levels (each a
power of two in size): 64, 128, 256, 512, 1024, 2048, and
4096 B. To provide a clearer understanding of this concept,
Fig. 5 visually illustrates the relationship between a 4-kB page
and its potential partitioned levels. For instance, a 4-kB page
can be partitioned into 64 64-B subpages, with each subpage
dedicated to storing neighbors from the same vertex. Second,
the allocation process chooses an appropriate memory area
size from among the available options based on the vertex’s
degree. This adaptive approach ensures that memory allocation
is tailored to the each vertex’s specific characteristics, resulting
in improved performance and resource utilization.

GEAR uses the mmap system call to obtain multiple 4-kB
pages from the operating system (OS). The multilevel page
allocation partitions each 4-kB page into identically sized
subpages that fall into one of seven predefined levels. The
required size for storing all neighbors associated with a vertex
is estimated using the vertex’s degree, and a subpage that
meets or exceeds this requirement is allocated. This design has
a low overhead for multilevel page allocation, requiring only a
few extra bits per subpage to find a subpage’s location within
a 4-kB page. Furthermore, it mitigates the fragmentation issue
of fixed-size memory areas. Additionally, the alignment of
subpage sizes with the CPU cacheline4 (64 B) ensures that
unused data is not transferred from SCMs to the CPU cache,
thereby optimizing data transfer efficiency.

Fig. 6(a) and (b) show the data structures used by GEAR
to manage the mapping between each 4-kB page and its
subpages. The page metadata table [Fig. 6(a)] stores all rele-
vant information about each 4-kB page. The granularity flag
indicates the size of the corresponding subpage, represented by
a 3-bit binary number (for example, a subpage size of 2048 B
is denoted as 110). The empty flag indicates whether or not
the subpage has been allocated.

The available page lists [Fig. 6(b)] consist of seven arrays,
which include a free page list and six size-specific available
page lists. The free page list contains all 4-kB pages that
have not yet been divided into subpages. Each size-specific
available page list corresponds to one of the six subpage levels
(64 to 2048 B), maintaining all associated 4-kB pages with
unallocated subpages. This design requires only a 4-byte page
index to track each page. For example, given a 1-GB SCM,

4A cacheline is the smallest unit of data that can be transferred between
main memory and the CPU cache.
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(a) (b) (c)

Fig. 6. Data structures for maintaining evolving graph data on SCMs. (a) Page metadata table. (b) Available page list. (c) Vertex-to-page table.

there are 262, 144 4-kB pages, and the overall seven arrays
consume 1 MB (i.e., 262 and 144 pages × 4 B).

Lastly, GEAR features a vertex-to-page table [Fig. 6(c)] to
track the relationship between each vertex and its associated
page information. This includes the 1-byte vertex’s subpage
index, 4-byte page index, and 2-byte vertex degree. Based on
our calculations, the combined space overhead of all three data
structures (i.e., vertex-to-page table, available page list, and
page metadata table) accounts for less than 5% of the total
graph size.

Let us use an example to demonstrate the page allocation
process. To assign a 2048-B subpage to a vertex [e.g., V0 in
Fig. 6], the process starts by checking the 2048-B available
page list. If it is empty, the system chooses a page from the
free page list. The metadata table is then updated, with the
granularity flag set to 110 for the selected page, indicating its
size as 2048 B. The vertex-to-page table is then updated to
associate V0 with the allocated page index, with the subpage
index set to 0 and the degree recorded as 220. This allows
for efficient management and retrieval of graph data during
evolution and traversal.

C. Locality-Aware Data Placement

The locality-aware data placement strategy aims to maintain
strong graph spatial locality while transferring accumulated
graph updates from DRAM to SCMs to generate a snap-
shot. As part of this strategy, the multilevel page allocation
ensures that each vertex’s subpage is sufficiently sized5 to
accommodate all its neighbors. Consequently, each subpage
typically contains unused space, known as the reserved area.
This reserved area serves as a designated space for future
graph updates associated with the vertex, ensuring that new
updates to different vertices remain segregated, thus preserving
strong graph spatial locality across all vertices.

When incorporating a new graph update into a subpage’s
reserved area, two scenarios may occur: 1) the reserved area
of the targeted subpage is either sufficient (i.e., not full) or
2) insufficient (i.e., full). If the reserved area is sufficient, the
graph update is written directly to the appropriate reserved
area. In contrast, if the reserved area is insufficient, our
approach requires rewriting all previous data within the sub-
page, including the entire adjacency list, to a larger subpage.
This ensures that the most recent updates are accommodated
while preserving strong graph spatial locality for each vertex.
Even for node deletion, the graph system generates a new
graph update, as explained in Section II-A1. That is, whenever

5The size of the subpage must be greater than or equal to the space currently
occupied by all neighbors belonging to the vertex.

(a)

(b)

Fig. 7. Two scenarios for the reserved area. (a) Reserved area is not full.
(b) Reserved area is full, rewrite data to a larger subpage.

a neighbor is removed from a vertex, a new edge with a
negative value is appended to the adjacency list.

For instance, Fig. 7 shows how locality-aware data place-
ment works when writing all graph updates associated with
source vertex V0 to the SCM. The notation “(0, 1, W0,1)”
means the edge value between source vertex V0 and its neigh-
bor vertex V1 is updated to W0,1. There are two cases: when
the corresponding reserved area in the SCM is insufficient or
sufficient. In both cases, all graph updates are buffered in the
edge log array in DRAM. In the case where the reserved area
is sufficient, as depicted in Fig. 7(a), our policy directs the
writing of all graph updates associated with vertex V0 to the
corresponding subpage, which belongs to the 128-B level, in
the SCM.

On the other hand, in Fig. 7(b), the reserved area of the
subpage associated with vertex V0 lacks enough free space to
accommodate graph updates associated with vertex V0. Given
that the adjacency list of vertex V0 was originally stored in
a 128-B subpage, the data placement mechanism collaborates
with the multilevel page allocation to obtain an empty 256-B
subpage capable of storing both the old adjacency list and all
new updates for vertex V0. Subsequently, the old adjacency
list of vertex V0, along with its latest updates from DRAM, is
transferred and rewritten to the newly allocated 256-B subpage
in the SCM.

It is important to point out that our strategy only rewrites
subpages with insufficient reserved area, rather than rewriting
4096-B subpages equivalent to a normal page. Consequently,
compared to the merging strategy employed by state-of-the-art
frameworks, our strategy achieves strong graph spatial locality
for each vertex with fewer writes.

D. Dual-Granularity Wear Leveler

Data updates on real-world graphs exhibit a high degree of
skew, a phenomenon well-documented in [46], [47], and [48].
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Fig. 8. Interpage wear-leveling mechanism.

This skew is primarily attributed to hub vertices that
are densely connected to numerous neighboring vertices.
Consequently, these hub vertices undergo more frequent
updates compared to other vertices. Such skewed updates pose
a significant challenge in the context of SCM, which has
a limited lifetime. Moreover, our design’s manipulation of
subpage allocation introduces a further layer of complexity,
potentially resulting in disparate write counts among subpages
within the same 4-kB memory page. This disparity exacer-
bates the wear leveling issue, necessitating a comprehensive
approach to address wear leveling not only across all 4-kB
pages but also within each 4-kB page. To tackle this challenge
comprehensively, we propose a dual-granularity wear leveler
comprising both an interpage wear-leveling mechanism and an
intrapage wear-leveling mechanism.

We design the interpage wear-leveling mechanism to ensure
a uniform distribution of write counts across all memory
pages. The main idea is to consistently select the healthier
page during memory allocation. To facilitate this process, we
maintain a per-page write count for each memory page in
the page metadata table, as depicted in Fig. 6(a). Technically,
we use a multilevel page list, where each page list bounds
the minimum remaining write counts for each page within
it. The minimum remaining write count associated with the
highest level is determined based on the ideal lifetime of the
SCM device. To reduce maintenance overhead, we categorize
the minimum remaining write count for each level in an
exponential manner. For example, if an SCM device can
endure at most 108 write accesses per cell, our mechanism
configures the page list into six levels: 1) 107; 2) 106; 3) 105;
4) 104; 5) 103; and 6) 102, as illustrated in Fig. 8. The number
of each level denotes the minimum remaining write count.
The remaining write count for each page is calculated as 108

minuses the page write count. For example, 107 indicates
that the page belonging to this level can withstand at least
107 more write operations. This meticulous categorization
ensures an even distribution of write operations across memory
pages, thereby effectively mitigating wear-leveling issues at
the interpage level.

As detailed in Section III-C, insufficient space in a subpage
designated for storing graph updates the rewriting of all data
from the original subpage to a larger subpage. Such movement
of vertices between subpages within the same 4-kB page
can lead to wear-unleveling issues. To address this concern,
we introduce an intrapage wear-leveling mechanism, which

(a)

(b)

(c)

Fig. 9. Intrapage wear-leveling mechanism. (a) Available page: Write flag
== 0 and empty flag == 0. (b) No available page. (c) Reset write flag and
per page write count + 1.

is implemented by maintaining a 1-bit write flag and a 1-bit
empty flag in the page metadata table for each subpage. The
write flag records whether the subpage has been written in the
current round, with 1 indicating that it has been written and
0 indicating otherwise. Additionally, the empty flag denotes
whether the subpage is currently used by a vertex’s adjacency
list, with 1 indicating used and 0 indicating availability.

As shown in Fig. 9(a), we only allocate a subpage when
both the write flag and empty flag are 0, to ensure balanced
write counts across all subpages within the same 4-kB page.
When none of the pages in the available page list have
available subpages, it indicates most of the subpages in these
pages were written during this round. Thus, we reset all
the write flags of the available page list to 0 and increment
the per-page write count by 1. Subsequently, all subpages
become available again, as depicted in Fig. 9(b) and (c).
This approach not only maximizes the utilization of available
subpages but also ensures the amortization of write counts
across all subpages within the same 4-kB page, effectively
mitigating wear leveling issues at the intrapage level.

IV. PERFORMANCE EVALUATION

A. Evaluation Setup and Performance Metrics

This section evaluates the efficacy of GEAR in enhancing
the performance of both graph traversal and graph evolution.
We thoroughly compared SCM-based GEAR to three baseline
approaches, checking their performance in a number of areas,
such as execution time, TLB miss rate, CPU cache miss
rate, energy use, and the number of writes to the SCM.
The three baseline approaches consist of two state-of-the-art
evolving graph processing frameworks: 1) LLAMA [21], con-
figured with merge frequencies set to 100 and 500 snapshots
and 2) GraphOne [23], which incorporates cache-line-sized
memory allocation and hub vertex handling. GraphOne’s
memory allocation strategy provides a cache-line-sized (i.e.,
64 bytes) area for storing nonhub vertices, while its hub vertex
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Fig. 10. Normalized execution time of running graph algorithms on evolving graphs. (a) Dataset: Orkut. (b) Dataset: Twitter-2010. (c) Dataset: Friendster.

handling allocates a 4-kB page to accommodate all edges
belonging to a hub vertex. It is noteworthy that, according to
the literature, GraphOne includes delta checkpointing similar
to LLAMA, but GraphOne does not enable checkpointing by
default. Without loss of generality, all of the three baseline
approaches place frequently accessed data in DRAM and less
frequently accessed data in SCM.

To ensure a comprehensive evaluation, we selected three
representative datasets from the SNAP [45]: 1) Orkut;
2) Twitter-2010; and 3) Friendster. The Orkut dataset encom-
passes 3 million vertices and 0.23 billion edges. The Twitter
2010 dataset comprises 40 million vertices and 1.5 billion
edges. Lastly, the Friendster dataset includes 56 million
vertices and 2.6 billion edges. We selected these datasets to
offer a wide variety of graph sizes and complexities, enabling
a thorough assessment of the performance of SCM-based
GEAR.

We segment each graph dataset into 10 000 snapshots to
simulate the graph evolution process. We execute three widely
used graph traversal algorithms—breadth-first search (BFS),
Dijkstra (single source shortest path algorithm), and Random
Walk algorithms—on the evolving graph at intervals of
100 snapshots. We capture memory traces during the traversal
and subsequently replay them on our trace-based simulator.
Our simulator simulates an Intel Skylake architecture with

a fully associative TLB comprising 1536 entries and an 8
MB, 16-way associative L3 cache [49], [50]. The read/write
latency for DRAM and SCMs is set to 50/50 and 120/150
ns, respectively, based on previous studies [6]. Additionally, it
accounts for the energy consumption associated with writing
a bit to the SCM, estimated at 16.82 pJ per bit [51]. The
simulation environment is hosted on a server featuring an Intel
Xeon Gold 6252n CPU, 768 GB of DRAM, and running Linux
kernel version 5.4. This setup ensures a realistic emulation
of the graph traversal algorithms’ performance under various
evolving graph scenarios, enabling a thorough evaluation of
SCM-based GEAR and baseline strategies.

B. Evaluation Results

1) Performance Evaluation of Graph Traversal: In this
section, we focus on demonstrating the performance of
traversing an evolved graph. Unlike graph evolution, graph
traversal does not require additional data writes and therefore
does not impact the system’s lifetime. Fig. 10(c) presents the
results of the total execution time when running SCM-based
GEAR against the three baseline approaches. Specifically,
Fig. 10(a) and (b) depict the results obtained from executing
traversal algorithms on the Twitter-2010 and Friendster datasets,
respectively. The x-axis of each figure represents the number
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Fig. 11. TLB and CPU cache miss rate of running graph traversal algorithms (DataSet: Friendster). (a) TLB miss rate. (b) CPU cache miss rate.

of archived snapshots, while the y-axis displays the execution
time normalized to that of GraphOne. Due to the similarity in
performance trends across all 10 000 archived snapshots, we
only present results for the interval between 2000 and 2500
archived snapshots.

The results reveal that SCM-based GEAR achieves exe-
cution time savings ranging from 23% to 70% compared to
GraphOne, 0% to 74% compared to LLAMA (merge 500), and
0% to 27% compared to LLAMA (merge 100). These savings
are attributed to SCM-based GEAR’s ability to maintain strong
graph spatial locality, leading to fewer TLB misses when
accessing pages during graph traversal. Notably, SCM-based
GEAR achieves an execution time reduction comparable to
LLAMA, especially when the graph algorithm executes imme-
diately after LLAMA triggers snapshot merging. However,
LLAMA’s performance may exhibit instability, and frequent
snapshot merging, such as every 100 snapshots, can lead to
excessive energy consumption (further details are provided in
Section IV-B2).

To provide a detailed breakdown evaluation, Fig. 11 show-
cases the TLB miss rate and CPU cache miss rate results
obtained when running SCM-based GEAR against the three
baseline approaches on the Friendster dataset. In each figure,
the x-axis represents the number of archived snapshots, while
the y-axis depicts the TLB miss rate in Fig. 11(a) and the CPU
cache miss rate in Fig. 11(b). It is evident from the figures that
SCM-based GEAR consistently maintains a relatively low-
TLB miss rate and CPU cache miss rate across all numbers
of snapshots. Conversely, the TLB miss rate and CPU cache
miss rate observed in systems running GraphOne and LLAMA
exhibit fluctuations, occasionally exceeding 90% (except the
CPU cache miss rate caused by running a random walk),
depending on the number of snapshots created. GraphOne
experiences exceptionally high-TLB miss rates and CPU cache
miss rates due to the absence of a snapshot merging strategy

to preserve graph spatial locality during graph evolution. In
contrast, LLAMA (merge 500) achieves relatively low-TLB
miss rates and CPU cache miss rates every 500 snapshots
when the snapshot merging strategy is executed, but the rate
steadily increases to around 90%. Employing LLAMA with
frequent snapshot merging, such as LLAMA (merge 100), can
mitigate the occurrence of excessively high-TLB miss rates.
However, the frequent merging strategy significantly prolongs
the graph evolution process and, even worse, adversely affects
the SCM’s lifespan. More detailed evaluations of evolving time
and memory endurance will be presented in the subsequent
subsections.

2) Performance and Lifetime Evaluation of Graph Evolution:
Fig. 12 presents a comprehensive evaluation of both the
performance and lifetime aspects of graph evolution. In
Fig. 12(a), the time taken to evolve the graph to a specific
number of snapshots using different approaches is depicted.
The x-axis ranges from 1000 to 6000, representing the number
of snapshots, while the y-axis indicates the time for graph
evolution normalized to GraphOne. The evaluation shows
that systems running SCM-based GEAR exhibit superior
evolving performance compared to LLAMA due to GEAR’s
lower-time complexity. Conversely, LLAMA incurs greater
time consumption due to the periodic merging of snapshots,
necessitating the rewriting of all snapshots. For example,
LLAMA (merge 100) causes a longer graph evolution time
than LLAMA (merge 500) because snapshot merging is
triggered more frequently. Furthermore, SCM’s high-write
latency contributes to the extended time required for graph
evolution.

For a more detailed analysis of the graph evolution
performance, Fig. 12(b) illustrates the total edge write counts
to SCM for each system at intervals of 50 snapshots between
2000 and 2500 snapshots. The x-axis represents the number
of archived snapshots, while the y-axis indicates the total edge
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Fig. 12. Performance and lifetime evaluation on evolving a graph. (a) Time spent evolving the graph (DataSet: twitter). (b) Total number of edge writes.
(c) Maximum write counts among all pages.

writes normalized to GraphOne. GraphOne, which does not
incorporate snapshot merging in our experiments, does not
generate extra writes. In contrast, SCM-based GEAR may
produce more edge writes than GraphOne if the reserved
space of a vertex is insufficient, leading to the rewriting
of the original adjacency list to a newly allocated larger
subpage along with the latest updates. However, because the
SCM-based GEAR only rewrites vertices with inadequate
reserved space and limits the maximum rewriting size to 2048
bytes, its total edge writes are only about 2.1 times higher
than GraphOne’s. Importantly, GEAR’s total edge writes are
significantly lower than those of LLAMA, which merges
snapshots on a regular basis.

While LLAMA may achieve faster graph traversal by
merging snapshots more frequently, this has a significant
impact on SCM’s lifespan. Fig. 12(c) illustrates the normalized
maximum page write count as the system generates snapshots
ranging from 1000 to 10 000. The x-axis denotes the number
of snapshots, while the y-axis represents the maximum page
write count normalized to GraphOne. The results demonstrate
that our dual-granularity wear leveler is effective in mitigating
the increase in maximum page write count. This effectiveness
stems from the distribution of writes to a finer granularity,
specifically at the subpage level. Conversely, when LLAMA
frequently merges snapshots, the maximum page write count
experiences a sharp escalation, as observed in the case of
LLAMA (merge 100).

3) Evaluation on Energy Consumption: We further evalu-
ate the energy consumption associated with different graph
evolution approaches, as depicted in Fig. 13. The x-axis rep-
resents the number of snapshots ranging from 1000 to 10 000,
while the y-axis indicates the energy consumption. Each plot
in the figure illustrates the cumulative energy consumption
required to execute the total number of snapshots indicated on
the x-axis. Fig. 13 highlights that SCM-based GEAR exhibits
relatively low-energy consumption compared to LLAMA.
This is primarily because the rewrite operations triggered by
SCM-based GEAR result in fewer write accesses on SCMs
compared to the merging operations triggered by LLAMA.
Notably, GraphOne, which does not perform any snapshot
merging operations, consumes the least energy among all
solutions. Although SCM-based GEAR consumes more energy
than GraphOne, its scalability remains intact. This is evidenced
by the consistent energy consumption gap between GraphOne
and SCM-based GEAR, even as the graph evolves over time.

Fig. 13. Energy consumption (Dataset: Friendster).

In contrast, LLAMA’s energy consumption exhibits a linear
increase as the graph evolves, making it nonscalable. For
instance, LLAMA (merge 100) consumes 3 and 21 times more
energy than SCM-based GEAR when there are 1000 snapshots
and 10 000 snapshots, respectively.

V. CONCLUSION

Our research addresses the challenge of weak graph spatial
locality in evolving graph frameworks, which hinders efficient
execution of graph traversal algorithms. To mitigate this
issue, we introduce SCM-Based GEAR, a joint management
middleware that optimizes the arrangement and storage of
evolving graph data in both DRAM and SCMs. GEAR
comprises multilevel page allocation, locality-aware data
placement, and dual-granularity wear leveling components.
GEAR improves graph traversal performance while maintaining
strong graph spatial locality as the graph changes. It does this by
allocating subpages based on vertex-neighboring relationships,
keeping unused areas for future updates, and evenly spreading
write operations. Our evaluation demonstrates the effectiveness
of SCM-based GEAR, showing significant improvements in
execution time savings ranging from 23% to 70% compared to
state-of-the-art frameworks. Through meticulous management
of evolving graph data across memory devices, GEAR achieves
superior performance in traversing evolving graphs, addressing
critical challenges posed by weak graph spatial locality.
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