
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 1433

RTrap: Trapping and Containing Ransomware
With Machine Learning

Gaddisa Olani Ganfure , Member, IEEE, Chun-Feng Wu , Member, IEEE,
Yuan-Hao Chang , Fellow, IEEE, and Wei-Kuan Shih , Member, IEEE

Abstract— With advances in social engineering tricks and
other technical shortcomings, ransomware attacks have become
a severe cybercrime affecting organizations of all shapes and
sizes. Although the security teams are making plenty of ran-
somware detection tools, the ransomware incident report shows
they are ineffective in detecting emerging ransomware attacks.
This work presents “RTrap,” a systematic framework to detect
and contain ransomware efficiently and effectively via machine
learning-generated deceptive files. Using a data-driven decoy
file selection and generation strategy, RTrap plants deceptive
decoy files across the directory to lure the ransomware to
access it. RTrap also introduced a lightweight decoy watcher
to monitor generated decoy files in real time. As the timing of
the ransomware attack is not known to the victim in advance,
and the ransomware encryption process is speedy, the proposed
decoy-watcher executes an automatic/automated response after
the detection promptly. The experiment shows that RTrap can
detect ransomware with an average 18 file loss per 10311 legiti-
mate user files.

Index Terms— Deception-based detection, ransomware detec-
tion, affinity propagation, machine learning, adaptive decoy files.

I. INTRODUCTION

IN RECENT years, digitizing items and services has
empowered organizations to make data-driven business

solutions and convey customized digital services to customers.
By realizing the significance of data to the organizations, ran-
somware criminals are exploring sophisticated tactics to attack
the victim’s data. One emerging threat is ransomware, a mal-
ware that locks victim files by encrypting them and threatens
to delete them unless the victim pays cryptocurrency. With
the growing accessibility of tools for creating ransomware
samples and the profit gain of the attack, ransomware attacks

Manuscript received 1 July 2021; revised 25 April 2022 and 12 August
2022; accepted 11 January 2023. Date of publication 26 January 2023;
date of current version 7 February 2023. This work was supported in part
by the National Science and Technology Council under Grant 111-2223-E-
001-001, Grant 111-2923-E-002-014-MY3, Grant 111-2221-E-001-013-MY3,
Grant 112-2927-I-001-508, and Grant 112-2222-EA49-002-MY2; in part by
the Academia Sinica under Grant AS-IA-111-M01 and Grant AS-GCS-110-
08; and in part by the Ministry of Education under Yushan Young Fellow
Program. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Pete Burnap. (Corresponding authors:
Yuan-Hao Chang; Gaddisa Olani Ganfure.)

Gaddisa Olani Ganfure is with the Department of Computer Science,
Dire Dawa Institute of Technology, Dire Dawa 3000, Ethiopia (e-mail:
gaddisaolex@gmail.com).

Chun-Feng Wu is with the Department of Computer Science, National
Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan (e-mail:
cfwu417@cs.nycu.edu.tw).

Yuan-Hao Chang is with the Institute of Information Science, Academia
Sinica, Taipei City 115024, Taiwan (e-mail: johnson@iis.sinica.edu.tw).

Wei-Kuan Shih is with the Department of Computer Science,
National Tsing Hua University, Hsinchu City 300044, Taiwan (e-mail:
wshih@cs.nthu.edu.tw).

Digital Object Identifier 10.1109/TIFS.2023.3240025

have matured over the years, adopting more sophisticated
techniques.

In recent years, there has been considerable research on
ransomware detection. The conventional approach to detect
ransomware is the analysis of malicious executables [1], but
such an approach is becoming ineffective against polymor-
phism and code obfuscation techniques [2]. To conquer the
issue of code obfuscation utilized by criminals, the research
community has progressively moved towards behavior-based
analysis that focuses on monitoring the runtime behaviors,
such as system call sequence and R/W operations, which are
hard to modify without changing the core functionality of the
malware [3], [4]. For instance, in process level monitoring, any
running process with a trust score higher than the maximum
threshold value will be addressed as malicious activity. How-
ever, an adversary can bypass these approaches by splitting
the ransomware activity into N different processes, where
each process performs a small fraction (e.g., 1/N) of the total
ransomware operations with the same net output of execut-
ing ransomware [5]; for example, one particular ransomware
family that uses this evasion technique is LockerGoga [6].
The behavioral-based detections are effective with the known
threats but not unseen ransomware samples. As ransomware
attacks user files, recent works introduce a decoy file-based
deceptive solution to detect cryptographic ransomware attacks
early. These decoy files (or fake files) are created automatically
or manually and planted in the entire network [7].

The current ransomware detection techniques are constantly
confronted with new challenges. The main technical chal-
lenges of detecting emerging ransomware include the emer-
gence of file-less ransomware, utilization of multithreading,
file prioritization strategies, and code obfuscation for encryp-
tion. Notably, in 2019, we saw the most substantial number of
ransomware incidents ever [8], wherein in the U.S. alone, more
than 966 organizations were affected by ransomware attacks
with an approximated cost of $7.5 billion. Shockingly, 77%
of organizations impacted by ransomware were running state-
of-the-art endpoint protection [9]. The report underlines that
existing solutions to the organization’s security posture are
inadequate to cope with emerging ransomware threats. Such an
observation motivates us to look for an effective and efficient
strategy that provides a post-breach ransomware detection and
mitigation solution agnostic to the attack’s ransomware family
or variant.

This work proposes a ransomware detection and contain-
ment strategy called “RTrap,”, based on a simple yet effective
concept of trapping and containing ransomware with machine
learning. In contrast to prior works, the decoy files in RTrap

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8603-3062
https://orcid.org/0000-0002-6367-0517
https://orcid.org/0000-0002-1282-2111
https://orcid.org/0000-0001-8356-2495

1434 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

are chosen from legitimate user files adaptively through a
data-driven machine learning algorithm. Given N user files,
RTrap adaptively picks K subsets of user files that efficiently
and effectively represent the collection of documents as rep-
resentative decoy files.

RTrap initially considers a directory’s entire files as a
potential decoy file. A good set of exemplar decoy files
emerges after exchanging attraction messages through the
affinity propagation algorithm. After successive iterations,
K user files that receive the highest vote will become rep-
resentative decoy files. Then, the subset of legitimate user
files selected in this manner is duplicated and renamed to
become representative decoy files. Besides, to ensure that
the generated decoy files are up-to-date, RTrap periodically
checks for each update to a directory and reflects user activity
on each decoy file whenever necessary. The decoy-watcher
monitors the decoy files in real-time and flags each potential
access to the registered decoy files as suspicious activities;
it can apply some remedial actions to stop the attack in less
than 5 s in most cases and less than 11 s for more sophisticated
ransomware families. The experiment result also shows that
RTrap can achieve a 99.42% deception rate (i.e., an average
of 18 file-loss out of 10311 user files) over different families of
ransomware.

In short, the decoy-file selection and generation strategy
of RTrap is different from other approaches in various ways.
First, decoy files are selected from legitimate user files by
employing the affinity propagation technique, i.e., a technique
that allows the exchange of attractiveness messages among
files in a directory. While experimenting using 20 ransomware
families, we observed that no single ransomware sample
distinguishes the decoy files we planted from the legitimate
users. The existing deception strategy does not consider
emerging ransomware’s multithreading and file prioritization
strategy. However, the experiment shows that the deception
quality of RTrap is consistent across the ransomware families,
even with those that employ multithreading. The proposed
methodology of planting decoy files aims to maximize the
chance that the ransomware modifies the decoy files at all
times. To ensure the freshness of the decoy file, RTrap
introduces a mechanism to continuously regenerate decoys
to prevent an adversary from learning the deployed decoy
files. This idea can be realized by periodically scanning the
drive for a chance to update the decoy files. The existing
deception-based strategy proposes a fixed number of decoy
files. However, our Affinity Propagation-based strategy will
avoid the need to make a static number of decoy files by
intelligently learning the best number of decoy files for
protection.

The rest of this paper is organized as follows. Section II
presents the background and related work, and Section III
talks about the observation and motivation of this work.
Section IV introduces RTrap, a strategy to detect and mitigate
cryptographic ransomware attacks. The overall performance
of the proposed design, both in terms of deception quality
(i.e., detection rate) and efficiency, is assessed and discussed
in Section V. Finally, Section VI summarizes the work and
layouts some future directions.

II. BACKGROUND AND RELATED WORK

A. Ransomware

Ransomware is a malware class that locks victim files by
encrypting them for financial gain. The encryption and social
engineering tricks utilized by the ransomware samples vary;
however, most of the activities utilized to infect the victims are
the same across the families. First, the ransomware actors use
social engineering strategies to deceive users into download-
ing a dropper from a compromised link to their computers.
In the background, the dropper downloads an executable that
installs the ransomware. Then, the ransomware scans the local
and network-attached storage devices for particular file types
to encrypt. Following the file shortlisting, the ransomware
prioritizes and encrypts all the files. Finally, a readme file
containing the payment information will be shown to the
victim. The entire process happens rapidly, and more advanced
ransomware families can also spread to network-attached
devices. Note that the costs associated with a ransomware
attack are not only the direct cost of paying the ransomware
criminals but also the cost of enforced downtime, reputation
loss, and liability.

Besides the victim mistake, some technical traits make it
harder to detect ransomware attacks:

1) File search and encryption processes employed by ran-
somware are normal file-related operations.

2) Ransomware uses a secure encryption algorithm that is
impossible (or difficult) to break.

3) Accessibility tools to make ransomware variants allows
criminals to use zero-day exploitation (or new variant)
attacks.

4) By attaching its malicious activity to the legitimate
process, ransomware can bypass endpoint protection.

5) The ransomware attacks operate quickly since they tar-
get specific file types for encryption.

Overall, the net of these five points indicates that detecting
ransomware attacks is challenging.

Although the challenge and traits of ransomware differ from
family to family, they still interact with the user files. Hence,
by promptly detecting the interaction between ransomware,
and victim files, it is possible to overcome the issue of
late detection and code obfuscation strategies introduced by
emerging ransomware.

B. Related Works

In the literature, plenty of ransomware detection methods
have been proposed and each technique falls into one of
three categories: a) method based on ransomware signa-
ture, b) method based on real-time behavior analysis, and
c) deception-based detection.

Signature-based detection is a widely used technique to
detect malware/ransomware. This approach identifies opcodes
or strings that match the known ransomware marks. Authors
in [1] propose a static analysis framework that uses N-gram
opcodes with deep learning for ransomware detection. They
treat N-gram analysis of sequences as a natural language
processing problem, and their finding shows that their model

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

GANFURE et al.: RTrap: TRAPPING AND CONTAINING RANSOMWARE WITH MACHINE LEARNING 1435

is good at classifying ransomware activities. Moreover, the
authors in [10] proposed a ransomware detection strategy
that utilizes reverse engineering and static analysis of binary
codes with machine learning. Their finding shows that their
model exactness is nearly 96.5% on average. The big problem
with signature-based detection is that it fails to recognize
obfuscated code or ransomware that does not have signatures.
Technically, adding a single byte to the executable file will
create a new hash, allowing ransomware to bypass signature-
based detection.

Most ransomware detection solutions rely on dynamic
behavioral analysis of executables such as file-system interac-
tion patterns, traffic analyses, API calls, registry activity, pro-
cess activity, and hardware events (i.e., hardware performance
counters). Authors in [11] introduced pre-attack Paranoia
Activities such as API calls for ransomware family attribution.
To fingerprint the API activities, they execute the ransomware
collected from VirusTotal and VirusShare inside the Cuckoo
sandbox and then apply word-level natural language process-
ing (NLP) algorithms to represent and extract API features.
Following the feature extraction, they investigated numerous
machine learning models such as Naive Bayes, k-NN, RF,
NN, LSTM, and Bi-LSTM. Their finding shows that a model
built using Random Forest achieved an average classification
accuracy of 95%. A work in CryptoDrop [12] utilized the file
system activities such as I/O request patterns and file entropy
to detect ransomware attacks.

The interaction between C&C Server and the victim can
likewise be used as a behavioral feature to detect ran-
somware attacks [13], [14], [15], [16]. For instance, Almash-
hadani et al. [15] investigated Locky Ransomware using
network traffic data. The authors extracted 20 features from
the network traffic data to build a classification model. Their
experimental evaluation of the proposed detection system
using Random Forests, Bayes Networks, and Support Vector
Machines demonstrates that it offers high detection accuracy,
low false positive rate, useful extracted features, and is highly
effective in tracking ransomware network’s activities. Since
their work only focuses on locky ransomware, it is not easy
to generalize the finding as it may not work for others.
Also, while some ransomware families require an Internet
connection to start the encryption process, most ransomware
families need not require the C&C server connection to start
the encryption process on the victim file, which makes this
approach relatively constrained.

Another behavior-based ransomware detection feature is
monitoring hardware performance counters (HPCs) such
as cache-reference, cache misses, and several instructions
[17], [18]. To gain more ransom, ransomware criminals try
to encrypt as many user files as possible. Aggressively per-
forming file encryption and renaming usually incurs context
switch and thus fluctuates CPU status, such as CPU cache and
branch prediction. For instance, using several machine learning
algorithms, authors in EGB [18] evaluate the features obtained
from hardware performance counters to classify malicious
applications into ransomware and non-ransomware categories.

Their finding depicts that the model built using Random Forest
achieved the highest detection rate.

DeepGuard’s [19] work proposes a mechanism to capture
user activity by monitoring file interaction patterns and uses
a deep generative autoencoder architecture to recreate the
input. Their primary assumption is to train the deep gener-
ative autoencoder with the dataset of user file-interaction log
collected for several days. With repetitive training, the model
will be skillful in reconstructing unseen inputs with minimal
reconstruction error when the provided information resembles
legitimate user activity or patterns used to train the model,
and hence it can spot anomalous (or ransomware) activity.
In short, by solely modeling the user interaction pattern, this
approach can discriminate ransomware activity from benign
one.

In [20], a ransomware protection mechanism called SSD-
insider++ was proposed. This system worked in two folds,
i.e., detection and data recovery. This study was limited in its
implementation as assessing every I/O block, its header, and
payload during run-time is infeasible. The detection algorithm
observes I/O patterns of a host system and decides whether
the host is being attacked by ransomware in an early stage.

In order to improve the detection rate of crypto-ransomware,
authors in File-entropy [21] used the encrypted file entropy to
classify spot ransomware activity. More than 20 file formats
are encrypted and analyzed by WannaCry, Phobos, GandCrab,
and Globelmposter ransomware to gather features essential to
differentiate the ransomware task from that of file encryption,
such as Zip and 7z. Those extracted features are provided
to the support vector machine for the classification tasks.
The experiment result shows that their model can detect
ransomware activity with 85.17% average accuracy. However,
since this work only accesses only four ransomware samples,
it may not be capable of detecting other classes of ransomware.

The deception-based solution is the third approach to detect-
ing ransomware attacks. The deception-based solution works
by planting fake computer system assets (e.g., a web server or
router across the enterprise) to let the intruder come across and
trigger an alert whenever those deceptive assets are accessed.
Despite being in its infancy, some recent work proposed a
deception-based strategy to detect ransomware attacks [22],
[23], [24], [25]. To enable decoy-based ransomware detection,
Lee et al. [22] introduced a proof of concept to create and place
a decoy file based on ransomware file traversal pattern. In their
experiments, different ransomware samples are decompiled
and analyzed to understand ransomware file system traverse
patterns. Based on their analysis, they suggest planting two
deceptive files in the root directory (one decoy file, which
comes first in alphabetical order, and another decoy file that
comes first in reverse order). Besides, Gómez et al. [23]
developed a tool named R-Locker to impede the presence of
ransomware attacks. In their work, decoy files are generated
as a named pipe using makeinfo command in the Unix system.
These files are overwritten with 3 KB data and placed in the
user home directory, and the R-Locker blocks any process that
attempts to access those files. However, as all the generated

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

1436 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

decoy files are of the same type, ransomware can avoid
encrypting those named pipes so that the purpose of deception-
based detection is nullified. In Rwguard [25], the authors
unified the behavioral-based detection model with the decoy-
based approach to mitigate cryptographic ransomware attacks.
In Rwguard, the original user files are randomly chosen as a
decoy file. Furthermore, Cryptostopper [24] places arbitrarily
generated decoy files in the file system to provide a deceptive
solution against ransomware attacks. Hence, whenever any
malicious process tries to change the content of deceptive
files, Cryptostopper creates an alert to notify the system
administrator and close the infected host. The Cryptostopper
is a commercial product, so the technical details were not
reported.

In general, existing deception-based ransomware detec-
tion approaches assume that the ransomware uses a traver-
sal sequential file system to encrypt the file. However, our
observation indicates that emerging ransomware families (e.g.,
Ryuk) utilize multithreading and file-prioritization strategies
to encrypt victim files in parallel, leaving existing solutions
ineffective in detecting emerging ransomware attacks.

III. OBSERVATION AND MOTIVATION

A. Observation

The contention between ransomware criminals and secu-
rity teams is continuously heating up as both create new
weapons in their arsenal. As the security experts develop a new
ransomware detection strategy, ransomware actors develop a
more sophisticated technique to bypass the detection sys-
tem. In recent years, there has been considerable research
on ransomware detection. However, the current ransomware
detection techniques are constantly confronted with new chal-
lenges. The typical emerging challenges include (1) code
obfuscation, (2) file-less ransomware, (3) multithreading, and
(4) file prioritization for encryption.

1) Code Obfuscation: The utilization of sophisticated code
obfuscation and polymorphism are sharply increasing [26].
This technique allows criminals to hide the well-known string
of malicious code to bypass the detection system. Thus,
it is less likely to detect obfuscated code using signature-
based detection. Furthermore, during the dynamic analysis,
the signature-based solutions perform memory-intensive tasks
such as intercepting and correlating the API call sequence with
malware signatures or tracking each process activity for digital
evidence; this approach is computationally expensive. Most
organizations impacted by ransomware were also running
state-of-the-art signature-based and behavioral-based endpoint
protection [9].

2) File-Less Ransomware: In addition to the code obfusca-
tion techniques utilized to evade the detection [26], the shift to
fileless ransomware is also increasing in the cyber community.
Unlike attacks with files, fileless ransomware is sneakier in
its malicious activity into legitimate applications already built
into the operating system so that it turns Windows against
itself. For instance, ransomware families such as MegaCortex
use stealth to abuse window system components such as
PowerShell to start the encryption automatically to make the

Fig. 1. Multithreading Property of Emerging Ransomware (e.g., Ryuk).

attack appear to come out of nowhere [27]. In this approach,
the trusted Windows process performs a file encryption task,
making endpoint protection software believe that a trusted
application is modifying the documents. Overall, file-less
ransomware poses two main challenges to existing antiviral
solutions, (1) without an executable, there is no footprint for
signature-based solutions to detect this type of attack, and
(2) file-less ransomware works in memory. As a result, its
activity terminates when the system closes, making it more
challenging for security personnel to uncover what happened;
however, uncovering what happened is essential to prevent
future attacks. Thus, even organizations are deploying active
firewalls and applications allowing detective solutions; using
this stealth strategy will evade the security perimeter and leave
existing solutions ineffective [28].

3) Multithreading: Existing decoy file-based deception
strategies are built on the view that a ransomware attack
launches a single process so that the encryption is done
linearly from a root directory to subdirectories. Taking into
account that the ransomware file traversal begins from the
root directory, they recommend placing a decoy file in a root
directory. However, modern computers now have more than
one multi-core processor with multithreading technology. Such
advances in chip design offer tremendous performance benefits
for everyday business activities, as they allow parallel execu-
tion of a process to accelerate productivity. On the criminal
side, recent ransomware is designed to efficiently use modern
CPU hardware (if present) to parallelize the task of directory
traversal and file encryption, subsequently guaranteeing faster
and more destructive impact before being detected by vic-
tims [29]. For instance, a class of ransomware families such
as Ryuk and LockerGoga utilizes a multithreading strategy to
launch a sub-process for each shortlisted directory to fasten the
encryption process and make it difficult to detect by existing
solutions [29]. To validate this, we execute one of the Ryuk
samples in a virtual machine and log its activity on a directory
containing ten folders, each with 98 diverse document types.
The output in Figure 1 results from multiple threads, each
of which handles a different directory to encrypt user files in
parallel, for example, from 60s to 80s. This strategy enables
the ransomware to bypass process-level monitoring and central
decoy file placement strategies. This attack can achieve higher
throughput and lower latency for the attacker; thus, a more
robust design is required.

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

GANFURE et al.: RTrap: TRAPPING AND CONTAINING RANSOMWARE WITH MACHINE LEARNING 1437

Fig. 2. Observation: decoy file Creation Strategy vs Ransomware Prioritization Strategy.

4) File Prioritization: The other key features of emerg-
ing ransomware families are directory and file prioritization
strategy (or data-centric property). As the documents in the
enterprise can be stored in fixed local storage, removable
drives, or mapped remote shared drives, the ransomware might
prioritize certain drives or document sizes first to guarantee
success before being detected by endpoint protection systems.
In addition to storage drive prioritization, the ransomware can
be programmed to prioritize documents based on file metadata
such as size, date, and type. Example ransomware that employs
prioritization is BlackRuby, which first enumerates all files and
encrypts those denylisted file types that are hardcoded in the
binary and have a file size less than 512 MB [30].

However, existing decoy file generation strategies do
not consider this data-centric behavior of ransomware. For
instance, in [22], authors suggest creating two decoy files:
one comes first and the other comes at the end after file
name based sorting to overcome traversal techniques utilized
by ransomware. To show the inadequacies of this strategy,
we persuade it by showing one example directory content
that appeared in Figure 2. The directory content shown in
Figure 2(a) consists of 20 legitimate user files and two decoy
files created according to the filename. In a scenario where
the ransomware employs the same sorting strategy as the
way the decoy files are created (in this example, filename),
the deception guarantees 100% protection. However, as the
ransomware file-ordering/prioritization differs for each family
or variant, relying solely on specific file attributes is not
effective in detecting a variant class of ransomware. As
appeared in Figure 2(b), if the ransomware sorts the directory
content shown in Figure 2(a) based on file-size in ascending
order, the two decoy files shown in the directory will be
encrypted toward the end which nullifies the purpose of the
deception. These all indicate that the emerging ransomware
utilize different tactics to prioritize the encryption process, and
thus creating a decoy file statically by considering only specific
file attribute will not suffice as it leads to late discovery,
subsequently, more file-loss and more ransom demand for
restoration.

B. Motivation

Prevention is an ideal solution against a ransomware attack.
However, due to the victim’s mistake and technical challenges,
most of the attacks cannot be prevented. For instance, as the
report indicates, nearly half-million malicious binaries are

discharged every day, and notably, 99% of them have no
known signatures (i.e., zero-day attack) [31] making preven-
tion obsolete for most attacks. When the attacker circumvents
the prevention strategies, the next line of protection is the early
detection and containment of the attack. By early detection, the
defender can hinder the attack, or take other defensive actions.
Numerous solution has been proposed in the literature to
detect a ransomware attack. However, the report indicates that
the majority of organizations impacted by ransomware were
also running state-of-the-art endpoint protection software [9],
which underlines that existing solutions to detect ransomware
attacks are not adequate to cope with emerging ransomware
threats.

Based on the emerging traits of ransomware attacks
observed in Section III-A, this work is strongly motivated by
the need to develop effective and efficient strategies to combat
the various strategies used by ransomware. We first conduct a
ransomware file-interaction analysis to look for an alternative
strategy that is resilient to ransomware variants. By executing
the ransomware families inside the sandbox and logging their
activity, we discovered some common ransomware traits that
can be useful for detecting all types of attacks. That is,
regardless of the way ransomware utilizes code obfuscation or
stealth strategy to bypass security perimeter, ransomware can
change and rename a list of files (i.e., encryption and renaming
of the files with specific file extension), create or remove a list
of files (i.e., copying the original file, encrypting it, and finally
deleting the original content). This point out that, although
the challenge and traits of ransomware differ from family
to family, they still interact with the user files. Encrypting
the entire victim files will take time to complete. Hence,
by promptly detecting the interaction between ransomware
and victim files, it is possible to overcome the issue of
late detection and code obfuscation strategies introduced by
emerging ransomware.

IV. RTRAP: RANSOMWARE DETECTION AND
CONTAINMENT STRATEGY WITH MACHINE LEARNING

A. Overview and Design Concept

In this section, we introduce a design concept of “RTrap,”
a systematic way to detect and contain ransomware by luring
ransomware to attack the adaptively generated decoy files (or
traps). In essence, our method considers the variation in file
sorting strategy and the multithreading property of emerging

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

1438 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 3. Overview of RTrap.

ransomware to generate deceptive files at the endpoint (i.e.,
our solution provides endpoint security). We achieve this by
scanning the entire endpoint directory iteratively and allowing
all files in each directory to vote for candidate decoy files
based on their interestingness measure. After the successive
exchange of attractiveness messages (i.e., file attributes such
as file type, file size, date created, and date modified), our
strategy selects subsets of user files as decoy files. The
adaptive nature of decoy file selection based on file attributes
of the directory and the utilization of legitimate user files as a
decoy file makes the proposed solution have good performance
across ransomware families. Also, utilizing legitimate user
files as a decoy file for each endpoint makes it difficult for
adversaries to distinguish the decoy files from the legitimate
ones. RTrap ensures the freshness of the planted decoy files by
period scanning the respective directory for change. In RTrap,
users are believed to be aware of the decoy files on their
machines. Thus, any modification actions to the decoy files
signal a ransomware presence. The decoy watcher compo-
nents of RTrap are responsible for monitoring the planted
decoy files. Upon detecting modifications to the deployed
decoy files, the decoy-watcher will automatically disconnect
the host machine from the network and kill the malicious
process.

As shown in Figure 3, “RTrap” includes two major
components, i.e., Adaptive Decoy-file Generator (see
Section IV-B) and Decoy-watcher (see Section IV-C).
Given N files of a directory, RTrap (referred to as the
“RTrap model”) adaptively selects the K subset of user
files that efficiently represent the collection of documents

as representative decoy-files by employing a data-driven
machine learning algorithm, i.e., Affinity Propagation (AP).
Unlike the other clustering algorithms (e.g., K-means), the AP
algorithm does not require a prior estimation of the value of
K [32]. Hence, it best suits for “RTrap to intelligently decide
the required number of decoy-files. Once the decoy files are
generated, the decoy-watcher component monitors them in
real-time so that any potential access to them will trigger
defensive actions to contain the attack (i.e., disconnecting the
victim from the network and killing the malicious process
immediately).

Adaptive selection and real-time monitoring of decoy-files
will empower the proposed model to detect early the potential
attempts to access the decoy-files (including multithreaded
execution). Moreover, as the model selects decoy files by
considering all the file attributes, the impact of the file
prioritization strategy utilized by emerging ransomware (i.e.,
data-centric property) is minimal. Besides, to ensure that the
generated decoy files are up-to-date, the model periodically
checks for any update to a directory and reflects user activity
on each decoy file whenever necessary. Overall, irrespective
of the ransomware variant performing the attack, the proposed
solution can detect and contain the malicious process perform-
ing the attack as far as interacting with the decoy files.

B. Adaptive Decoy-File Generator

The decoy file generator module scans the target machine’s
file system starting at the specified root and identifies all
folders containing more than three files (i.e., the number can

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

GANFURE et al.: RTrap: TRAPPING AND CONTAINING RANSOMWARE WITH MACHINE LEARNING 1439

be adjusted), then select and plant decoy files for the respective
folder.

As illustrated in Figure 3, the decoy file genera-
tion module comprises of File-attributes Pre-processor (see
Section IV-B.1), Principal Component Analysis(PCA) based
File-feature Extractor (see Section IV-B.2), AP-based Candi-
date Decoy-file Picker (see Section IV-B.3), and Decoy-file
Generator (see Section IV-B.4). First, the “File-attribute Pre-
processor” component in “RTrap lists all files in a directory
and represents each file as a vector of attributes (e.g., file
size in Byte). As the type of value that each file-attribute
store differs, they are standardized to reduce the influence
of a high-valued attribute on the subsequent decoy file selec-
tion algorithm. Then, the “PCA-based File-feature Extractor”
module then projects the standardized file attributes into a new
representation by linearly combining the original unsupervised
inputs. The new representation outputs are uncorrelated and
ranked based on their significance (i.e., explained variance).
Therefore, by constraining the cumulative explained variance,
this component can expel redundant features while preserving
important features. The dimension-reduced data becomes the
input to the “AP-based Candidate Decoy-file Picker,” which
applies a clustering algorithm to return a list of K candidate
decoy files. Finally, based on the output of the AP-based
Candidate Decoy file Picker and predefined constraints (e.g.,
the maximum file size limit of decoy files), the selected
legitimate user files are renamed and created for each directory
by the “Decoy-file Generator.”

Note that deception-based detection has a narrow field
of view; when the ransomware file prioritization strategy
is not similar to that of the deployed decoy-file attributes,
the decoy-watcher may never detect the ransomware, or it
may detect it lately after several files are encrypted. Thus,
planting decoy-files heuristically with specific file attributes
as in [22] will constrain the deception performance (or qual-
ity). However, the data-driven decoy-file selection strategy of
“RTrap allows it to introduce variety in both the number and
types of files (or file-attributes) to use for each directory (see
Figure 5). Subsequently, it generates the best decoy files that
have the potential to be accessed at an earlier stage compared
to the heuristic selection of decoy files. Thus, we consider
that the deception quality of the proposed solution is resilient
to the ransomware file-prioritization strategy.

1) File-Attributes Pre-Processor: The decoy file generation
process begins with transforming all files into a vector of
features in a directory. In this work, a feature is a file attribute
(specifically, file size, file type, file creation date, and date
modified) that can be extracted from a file using File-attributes
Pre-processor. By naively looking at those features, one can
observe that the type of value that each attribute store differs;
for example, the file size stores numeric value, whereas the
file type stores a category. Thus, it is essential to standardize
those attributes to some scale so that the value of one attribute
does not dominate the decoy file selection process.

A data pre-processing is applied to normalize the attributes
to make them suitable for the decoy file selection component.
In “RTrap, continuous-valued attributes (e.g., file size) are
normalized using standard-scaler with mean zero and unit

variance; categorical attributes (e.g., file type) are integer
encoded; date and time-related file attributes (e.g., modifi-
cation date) are standardized using sine and cosine transfor-
mation [33], [34]. Subsequently, for each file in a directory,
the following standardized features are formed [file-type, file-
size, date-created, . . . , fm], where m indicates the number of
attributes or features after standardization. Note that the ran-
somware utilizes different prioritization techniques to shortlist
the victim files for encryption (see Section III). Note that it
is essential to incorporate the most common file attributes
because the file sorting attribute that the cybercriminals use
is not known a priori. Finally, a feature matrix of the form N
× M will be formed for each directory, where N indicates the
total count of user files in a directory, while M represents the
count of file attributes (or features) after standardization. Note
that after performing the file-attributes pre-processor, we refer
to “file” as “data point,” and a collection of data points is
denoted as a feature matrix D which corresponds to one row
in D f . The set of all features in a directory D is denoted
as D f .

2) PCA-Based File-Feature Extractor: To have helpful
machine learning models (or results), we must find a simple
yet effective way to represent the input feature while preserv-
ing the representation and reducing the computation overhead.
This concept is also critical for the proposed decoy file picker
module as it employs a distance metric to calculate the initial
similarity matrix. Intuitively, as the size of feature matrix
D increases, the computational overhead increase; this also
adversely affects the clustering result [35] during the decoy
file selection phase. For instance, some directories may contain
the same file type or creation time. In such cases, including
repetitive attributes will pose additional computational com-
plexity with no gain in clustering performance. Thus, our
design expels those redundant features by applying a PCA-
based File-feature Extractor. This module applies a principal
component analysis1(“PCA” for short) to project the standard-
ized feature matrix into a new representation that is formed by
linearly combining the original inputs in an unsupervised way.
Given a normalized feature matrix D, the PCA-based File-
feature Extractor works: first, calculate the covariance matrix
between a pair of data points. Then, decompose the covariance
matrix into eigenvalue and eigenvectors, where the eigenvector
indicates the direction of transformation (or line), whereas the
eigenvalue indicates the spread of data points on the line which
is an eigenvector. Finally, the new input representation (Dnew)
is calculated as follows:

Dnew = W T D (1)

where D is the original data matrix and W is a matrix of
principal component (or eigenvectors). Note that unless some
threshold is set a priori, Equation 1 returns the same number
of features as in the original data matrix but sorted in their
importance value from left to right. Thus, the remaining task is
to pick L representative principal components (where L<N)
represent the data well (i.e., which have the most variance).

1PCA is a de facto algorithm to reduce input dimensions in various machine
learning applications such as face recognition [36], image denoising [37]

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

1440 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 4. Example Message Graph of decoy file Selection Process (The color
of the arrow after iteration T indicates the strength of the message for a point
i to select a candidate point k as a representative point (or decoy file)).

In this work, the number of principal components is selected
online based on their explained variance, which is the propor-
tion between the variance of each principal component and the
total variance. In the prototype of “RTrap, the variance thresh-
old is set to 99%, which indicates that the principal component
(or feature) whose values do not change from observation
to observation are expelled from the subsequent task. This
strategy is essential to reduce unnecessary features with an
explained variance near zero, such as having the same file
attribute for all files in a directory. Overall, by enforcing the
threshold on the output of PCA, the PCA-based File-feature
Extractor module remove redundant features (or attributes) and
thus can effectively extract the discriminant feature, which is
essential for the subsequent clustering algorithm. Thus, the
final output of this component is a new feature matrix with
a reduced dimension of N×L , where L denotes the chosen
number of principal components.

3) AP-Based Candidate Decoy-File Picker: Suppose that
there are N files in a directory, and each file in a directory
is of the form xi , i = 1, 2, . . . , l (where l is the number
of features after the PCA-based file-feature extraction). The
design goal of the decoy file picker component is to identify
clusters of similar data points (i.e., clusters of similar files)
based on the extracted features and return K data points that
best represent the clusters; each returned K data point is
a cluster center that later becomes a candidate decoy file.
However, there is one basic constraint in the unsupervised
clustering algorithm, and this constraint is that the desired
number of groups (or clusters) should be specified (e.g., K ,
where K < N). Choosing K samples out of N possible
samples is a combinatorial optimization problem that is NP-
hard [38]. As a means to tackle this challenge, our solution
adopts the algorithm called Affinity Propagation (AP) [32].

AP-based center selection works by simultaneously consid-
ering each data point as a potential center and allowing each
data point to vote for its representative data by employing
similarity metrics. Finally, a subset of data that receives a vote
will be considered a center. Thus, the value of K is equivalent
to the number of data points receiving the vote (or receiving
a preference from other data points).

Likewise, the AP algorithm solves the candidate decoy-file
selection problem by initially considering each data point
as the potential decoy-file. Then, after successive message

passing between candidate decoy-files, a good set of decoy-
file emerges. Hence, in our design, the candidate decoy files
(i.e., exemplars) and the number of decoy files (i.e., K) are
intelligently decided by the model. This idea can be conveyed
mathematically by first calculating the similarity (Sim(i, j))
between a data point xi and another data point x j with a
convectional negative Euclidean distance metric as follows:

Sim(i, j) = −∥X i − X j∥
2, i ̸= j (2)

Upon computing the pairwise similarity, the next step is
enabling the exchange of two types of attractiveness messages
among the feature vectors until the desired convergence level
is reached (see Figure 4). The first message transmits from
point i to the candidate point j is the responsibility matrix
Resp(i, j), which measures how appropriate a point j can
represent a point i , considering other competing points. The
subsequent message is the availability matrix Avail(i, j),
which estimates how suitable it could be for a point i to
pick point j as its representative center, considering the
support that data point j receives from other potential data
points. In the beginning, the value of both the responsibility
and availability matrix is initialized to zero. Then, for each
iteration, the corresponding value of both matrix is computed
as follows [32]:

Resp(i, j)

=


Sim(i, j)−max j ′ ̸= j {Avail(i, j ′)+ Sim(i, j ′)},

i ̸= j
Sim(i, j)−max j ′ ̸= j {Sim(i, j ′)}, i = j

(3)
Avail(i, j)

=


min {0, Resp(j, j)} +

∑
j ′ ̸=i, j max {0, Resp(j ′, j)},

i ̸= j∑
j ′ ̸=i max {0, Resp(j ′, j)}, i = j

(4)

As given in Equation 3, Resp(i, j) quantifies the relative
similarity between data point i and j considering how similar
other data point j ′ is to i (Sim(i, j ′)) and how available j ′ is to
i (Avail(i, j ′)). Thus, the value of Resp(i, j) only increases
whenever the availability of other competing j ′ decreases.
On the other hand (Equation 4), the availability of j to i
(Avail(i, j)) is the function of how responsible a data point
j is to itself (Resp(j, j)) and how positively responsible j is
to the other data points (

∑
j ′ ̸=i, j max {0, Resp(j ′, j)}).

Moreover, to ensure model convergence, the computed
values after each iteration are updated as follows:

Resp(i, j) = (1− α)Resp(i, j)+ αRespt0(i, j) (5)
Avail(i, j) = (1− α)Avail(i, j)+ αAvailt0(i, j) (6)

where Respt0(i, j) and Availt0(i, j) represent previous values
of responsibility and availability, whereas α is a learning rate
introduced to reduce numerical oscillations. Finally, the model
returns the best exemplar/representative point (or candidate
decoy file) for each point i , so that the sum of availability and

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

GANFURE et al.: RTrap: TRAPPING AND CONTAINING RANSOMWARE WITH MACHINE LEARNING 1441

Fig. 5. Example to Show the Adaptivity of decoy file Selection Strategy
(Variations in number and types of decoy files selected across the folders).

responsibility is maximized with the following equation:

Exemplari ← arg max
k
{Resp(i, j)+ Avail(i, j)} (7)

Upon convergence, the model returns k exemplars (or candi-
date decoy files) with their index and passes them to the decoy
file generation module.

As shown in Figure 5, the model dynamically selects a
varying number of decoy files, in terms of number and
file-types across the directories. Since the proposed design is
data-driven, the variety appeared in Figure 5 is because of the
variety in file types and the number of legitimate user files
across the directory.

As shown in Figure 5, the model dynamically selects
various decoy files in terms of number and file types across
the directories. Since the proposed design is data-driven, the
variety that appeared in Figure 5 is because of the variety in
file types and the number of legitimate user files across the
directory.

4) Decoy-File Generation: The proposed design provides
the option to specify the percentage of decoy files to use for
protection (i.e., the ratio of the decoy files to the original
legitimate user files in terms of storage size). The model
iteratively creates a decoy file in each run until the total storage
size of decoy files surpasses the limit based on the number of
votes received (refer to Equation 7). However, unless the decoy
file size limit is specified, all the candidate decoy files returned
by the decoy file picker module (see Figure 5) are created.
Moreover, the designed prototype allows the user to specify the
sequence of characters to name decoy files; this is important
to avoid false-positive rates. The string provided by the user
is combined with the original filename to exhibit a legitimate
user file to the attacker. For instance, a candidate decoy file
named “report.pdf” can be recreated as “reportdecoy.pdf”,
or “resecretport.pdf”, etc.

As time passes, users can change and modify the list of
files, leaving decoy files unaltered; this permits a sophisticated
attacker to ignore files and folders that the owner never
accesses, nullifying the purpose of deception-based detection.
Hence, the generated decoy files could be indistinguishable
from legitimate user files to be effective. In RTrap, the pro-
posed design periodically updates the generated decoy files so
that the attacker cannot distinguish decoy files from legitimate
user files. Obscurement is done by reflecting user activity

on decoy files based on a predefined schedule or threshold
for triggering the update; whenever the update module is
triggered, the update module checks if there is any update
to the content of the user file accordingly, updates the decoy
files. To avoid scanning the entire system, we can log the
file activity and trigger the update only for those directories
with the cost of storing file-change statistics. In addition, it is
likewise possible to enable dynamic thresholds by learning the
timing of file change performed by the user at each point in
the day, week, or month and accordingly trigger the decoy-
updater.

C. Decoy-Watcher

“RTrap” assumes that users are aware of the decoy files on
their machines. Thus, any modifications to the decoy files sig-
nal a ransomware presence. The decoy-watcher components of
RTrap are responsible for monitoring the planted decoy files.
Upon detecting modifications (any changes) to the deployed
decoy files, the decoy-watcher will automatically disconnect
the host machine from the network and kill the malicious
process.

In addition to malicious activity detection, having endpoint
protection that autonomously stops or kills the malicious
process is the best method of containment during the ran-
somware attack. This is because ransomware resembles the
behavior of cancer spreading in a body; that is, the longer
the ransomware activates in the victim devices, the more harm
to the organization as the ransomware can also propagate
to the network-attached devices to encrypt as many files as
possible. Toward this, we introduce a decoy-watcher. The
decoy-watcher component monitors the generated decoy files
in real-time and executes defensive actions such as killing
the malicious process or disconnecting the victim from the
network whenever decoy files are modified.

In addition to malicious activity detection, endpoint pro-
tection that autonomously stops or kills the malicious pro-
cess is the best containment method during a ransomware
attack. Having a mechanism to stop ransomware autonomously
is essential because ransomware resembles the behavior of
cancer spreading in a body; that is, the longer the ran-
somware activates in the victim devices, the more harm to
the organization as the ransomware can also propagate to
the network-attached devices to encrypt as many files as
possible. Toward this, we introduce a decoy-watcher. The
decoy-watcher component monitors the generated decoy files
in real-time and executes defensive actions such as killing
the malicious process or disconnecting the victim from the
network whenever decoy files are modified.

In Windows-based operating systems, the file system mon-
itors any activity performed by the program/process that
involves files (e.g., creating, deleting, updating, or moving
files). The event (or message) generated by a file system
is placed in the operating system’s internal buffer. Thus,
registering the third-party applications to those events makes
it possible to listen for file events and perform application-
specific tasks. For instance, Windows Explorer registers for
file change events to refresh the list of documents inside the

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

1442 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

directory. Likewise, the proposed decoy watcher is registered
with the file system to get a notification whenever the decoy
files are changed, renamed, created, or deleted. File changes,
rename, create and delete operations are chosen because
ransomware can (1) change and rename a list of files (i.e.,
encryption and renaming of file with specific file extension)
and (2) create and delete files (i.e., ransomware encrypts
the original file to create an encrypted file and then deletes
the original file). Thus, upon receiving the notification, the
decoy-watcher can take all the necessary actions to mitigate
the attack; for example, the decoy-watcher can disconnect the
host from the network, kill the malicious process, clear all the
registry values, and shut down the system. Furthermore, with
the cost of more file losses, extending the “mitigation task” to
notify the system admin by SMS or email before the system
shutdown is possible.

Overall, the integration of decoy-watcher with a file system
makes it efficient in terms of real-time memory usage and
CPU usage statistics. In this work, we implement the pro-
posed “RTrap, including the decoy-watcher, on “Windows”
operating systems because Windows is a widely-used operating
system in the world.

Integrating the decoy-watcher with a file system makes
real-time memory usage and CPU usage statistics efficient.
In this work, we implement the proposed “RTrap,” including
the decoy-watcher, on “Windows” operating systems because
Windows is a widely-used operating system worldwide.

V. EXPERIMENT SETUP AND ANALYSIS

This section evaluates the performance of RTrap with actual
ransomware and document samples on real operating systems.
The experiment results are discussed in terms of “file-loss
analysis” (i.e., the number of files lost before detection), “stop-
ping distance”(i.e., the time it takes to contain the ransomware
activity), “sustainability analysis,” “false-positive rate,” and
“overall impact” on the target system in terms of resource
consumption.

A. Experiment Setup

To assess the performance of RTrap, first, we implemented
RTrap with all the experiments on Windows 10 and built a
set of representative ransomware samples and user documents.
The ransomware families used for the experiment were Babuk,
BlackRuby, CobraLocker, CoronaVirus, Crisis/Dharma, Egre-
gor, GlobeImposter, Grandcrab, Jigsaw, LockerGoga, Makob,
Maze, Petya, Phobos, Polyransom/Virlock, Ryuk, Shade, Sodi-
nokibi, TeslaCrypt, and Xorist. These ransomware families are
the most active (or top) ransomware attacks from 2018 to Q1
of 2020 [39]. For each family, we collected 15 executable
samples (if available) from different online malware archives,
such as VirusShare [40], to constitute 1106 samples. Finally,
we built a set of representative files for ransomware to attack.
The representative user documents in this study were col-
lected from two publicly available corpora, i.e., govdocs1 [41]
and Coldwell’s audio files [42]. These records constituted
10311 files, including image files, spreadsheets, programming
source codes, reports, pdf, recordings, music, archives, and

so forth. Each record was randomly assigned to a folder and
subfolder (see Figure 5) and placed in a virtual machine (VM)
with Windows 10 installed. After each run of ransomware,
a VM was reset to an earlier snapshot (1) to avoid the impact
of the previous ransomware execution on the current execution
and (2) also to make rerunning the analysis of ransomware
activity much more straightforward. Since some ransomware
variants have an anti-analysis feature, we set a timeout time
to 20 minutes to avoid a long waiting time for pointless
ransomware samples. Anti-analysis exist because out of the
1106 ransomware variants we executed, only 846 of them get
activated in 20 minutes.

For comparison, we implemented two related works
that employ deception-based ransomware detection (i.e.,
Lee et al. [22] and Rwguard [25]) and three dynamic-behavior
analysis methods (i.e., EGB [18], DeepGuard [19], and File-
entropy [21]) (see Section II-B for details). Note that since
the source code of Lee et al. [22], File-entropy [21], and
Rwguard [25] are not available to the public, they are
re-implemented for comparison. For the EGB [18] model,
the source code and training data are publicly available.
The source code and training data of DeepGuard [19] are
shared with us by the authors of DeepGuard [19]. The same
experimental setup was used to investigate RTrap and all the
baseline models.

B. Decoy File Quality Metric

Let us denote ransomware as R and a set of legitimate user
files as F . The quality of deceptive files created via a decoy
file generation method g is given as follows [43]:

Pr[|X g
R(F) = n|] (8)

where X g
R(F) is the variable that outputs the total number

of legitimate user files that a ransomware R encrypts before
attacking one in the set of deployed decoy files. For instance,
if there are 100 user files, and ransomware R scrambles
40 user files before getting to any decoy files during the
attack, the value of n in Equation 8 becomes 40. This result
suggests that the deployed decoy file ensures a 60% deception
rate (or detection rate) against the ransomware R. However,
n = 0 indicates that the deployed decoy file promptly deceives
the ransomware. Hence, a good deception strategy should
minimize the likelihood that ransomware scrambles legitimate
user files before being detected.

To apply this decoy file quality metric, we develop a simple
analysis tool that logs every interaction between ransomware
and user files. This tool adds the event data to a new line,
where each line in the log file comprises four fields, which are
“timestamp,” “document path,” “event type,” and “counter”,
where a counter is a variable that increments from 0 to n
whenever legitimate user files are changed by ransomware.
To make the log file safer, we save it as an executable file
(.exe file). We refer to this metric as file-loss analysis in the
subsequent section as it quantifies the number of files lost
before ransomware R encrypts one in the deployed decoy files.

In both the EGB and DeepGuard, ransomware detection
is modeled as a classification problem. Hence, to have a

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

GANFURE et al.: RTrap: TRAPPING AND CONTAINING RANSOMWARE WITH MACHINE LEARNING 1443

fair comparison with the deception-based approach, for the
EGB and DeepGuard experiments, we count the number of
files encrypted by the ransomware before the model outputs
the current activity as the ransomware activity. Whenever the
model outputs the current activity as the ransomware activity,
we stop writing to the log file and count the number of files
modified by the ransomware during that experiment (i.e., from
the log file).

C. File-Loss Analysis

This Section assesses the quality of the proposed decoy
file generator in deceiving ransomware. As discussed in
Section V-B, the amount of data lost before detection (i.e.,
before decoy files are accessed) is our valuable metric for
quality measurement because when the ransomware attacks
the decoy files, the decoy-watcher in RTrap quickly fires the
mitigation task to stop the malicious process from protecting
most files from the ransomware. Conversely, when the decoy
files are accessed lately by the ransomware, most user files will
be scrambled/encrypted; this leads to more ransom demand.
The experiment results in Figure 6 indicate the average file loss
(y-axis) for each ransomware family used in the experiment.

The results show that all the deception algorithms effectively
deceive the attack at an early stage with a minimal file loss (on
average, 200, 288, 296, 273, 163, and 18, for Lee et al. [22],
Rwguard [25], DeepGuard [19], EGB [18], File-entropy [21]
and RTrap, respectively), considering that experiments have
been carried out using the emerging and more sophisticated
ransomware families and variants. However, unlike RTrap,
the other baseline models’ deception quality (or detection
performance) fluctuates significantly as the ransomware family
changes. The number of lost files before deception (or attack-
ing decoy files) ranges from 107 to 345 for Lee et al. [22]
strategy, from 12 to 527 for File-entropy [21], and it ranges
from 152 to 486 for Rwguard [25]. Similarly, the number of
lost files for DeepGuard [19] and EGB [18] fluctuates between
106 and 596.

The main reason for the disparity and increase in the number
of lost files across ransomware families for Rwguard [25]
and Lee et al. [22] is that they create decoy files without
considering the property of files in a directory and the ran-
somware file prioritization strategy. As the ransomware strate-
gies vary in different contexts (see Section III), planting decoy
files heuristically cannot guarantee the model’s effectiveness.
Subsequently, this behavior makes the model highly sensitive
to the ransomware family or variant performing the attack.
DeepGuard [19] and EGB [18] rely on the threshold (where
the threshold is learned from examples during the training)
to dictate that the current activity is a ransomware activity
or benign activity. For instance, in EGB, any running process
with a trust score higher than the maximum threshold value
will be addressed as malicious activity. However, this approach
is ineffective for ransomware families that employ process
splitting, and hence the performance of EGB and DeepGuard
fluctuates with ransomware families.

One of the constraints of the deception-based approach
is that they have a narrow field of view; that is, they only

Fig. 6. File-loss Analysis (The x-axis denotes the ransomware family, sorted
by family name where x=1 indicates Babuk, whereas x=20 denotes the Xorist
family).

see the access directly toward the decoy files. Subsequently,
when the ransomware file-type/file-size prioritization is not
similar to that of the deployed decoy file attributes, the
decoy-watcher may never detect the ransomware (or it may
detect it lately) after several files are encrypted. A decoy file
generation strategy that is adaptive or resilient to any file
ordering or prioritization technique utilized by ransomware
is one of the missing components in the existing literature.
In Rwguard [25], the authors suggest creating decoy files with
specific file types and sizes. However, creating decoy files
in this manner can lead to late discovery (or no detection)
for some ransomware families that encrypt any types of
files (or file types other than the decoy files). Consequently,
the performance of Rwguard is unstable across ransomware
families concerning the file-loss analysis.

In contrast, the proposed model significantly and con-
sistently outperformed the other approaches in deceiv-
ing/detecting different ransomware families with an average
of 18 lost files per 10311 user files; this is equal to a 99.82%
deception rate. The RTrap performance likely emanates from
the proposed decoy file generation strategy’s data-driven solu-
tion. As discussed in Section IV-B, in RTrap, the decoy files
are generated intelligently with a data-driven solution where
each file in a directory votes for its corresponding repre-
sentative decoy file after iteratively exchanging attractiveness
messages. This data-driven strategy allows the model to decide
and select the required number of files without manually
specifying the number of decoy files. Creating decoy files
in this manner permits the model to deceive the attack by
being accessed at an earlier stage. Hence, the variety in file-
sorting/prioritization techniques utilized by ransomware has
little impact on RTrap deception quality. Overall, the file-loss
analyses highlight that the data-driven nature of the proposed
decoy file generation strategy resolves the issue of ransomware
variation in some way and provides better deception quality
than the two baseline models across ransomware families.

Figure 6 also depicts how effectively the investigated models
detect ransomware families that employ multithreading. Our
experiment includes ransomware that parallelizes the encryp-
tion process, such as LockerGoga (number 10 in Figure 6)
and Ryuk (number 16 in Figure 6). The result depicted in
Figure 6 shows that RTrap can minimize the file loss caused

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

1444 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

by LockerGoga and Ryuk ransomware by 251, 267, 124, 171,
and 181on average compared to Lee, Rwguard, DeepGuard,
EGB, and File-entropy respectively.

In addition, to assess the impact of the variation of file
types and folder structure on the model detection performance,
we repeat the experiment using the dataset collected from
Microsoft Research Open Data [44]. Nearly 320 Gigabytes
of files with different file types such as CSV, TXT, image,
audio, JSON, pdf, ppt, HTML, cs, m, mat, bvh, and Docx
are selected and planted on the test virtual machine. All tests
use the same hardware, Operating System, and ransomware
reported in Figure 6. As the file types, file content, folder
structure, and file quantity change, one expects to see an
increased variation in performance, and the results support this.
However, the performance of RTrap is more consistent with
the one reported in Figure 6, affirming the adaptive nature of
the decoy file generation strategy.

D. Sustainability Analysis of RTrap

Numerous malware defense solutions have been developed,
yet research in [45] and [46] indicates that many quickly
became outdated due to the fast evolution of benign and
malware program development. Cybersecurity today feels too
much like a game of cat and mouse. As the security experts
invent a novel attack detection mechanism, criminals will
concoct another strategy to go unnoticed. The occurrence of
zero-day malware/ransomware is a fundamental and progress-
ing issue for all organizations.

As discussed in Section II-B, numerous malware detection
solution exists. Rule-based or Machine learning-based solution
identifies malware by predicting a given app as benign or mali-
cious based on the extracted static (e.g., OpCodes), dynamic
(system API calls), or hybrid features. However, due to the
frequent benign program and malware evolution, malware
classifiers built on these features may not be sustainable as
they require retraining to cope with the evolution of benign
and malware programs; otherwise, the detection performance
deteriorates [45], [46], [47], [48], [49].

The sustainability challenge with existing malware detection
has been a point of interest in recent years [45], [46], [50]. For
instance, authors in [46] discovered that the performance of
the state-of-the-art Android malware detector solution drops
by 60% within one year. From these recent prior works,
developing a sustainable ransomware detector is pivotal; if
not, without retraining, the detector will not have the option
to recognize new ransomware, which presently continues to
emerge and surge.

As pointed out in the different sections of this paper, RTrap
provides signature-less and behavior-agnostic ransomware
detection. Thus, unlike solutions that rely on the feature
extracted from benign programs and malware, the RTrap pro-
gram is sustainable concerning the benign program evolutions.

While the deception quality of RTrap in the original test
ransomware was nearly 99.82%, we can not tell how the
RTrap detection performance will change over time as new
ransomware gets released. Toward this, we conducted an
experiment using ten ransomware families released to the

Fig. 7. Sustainability Analysis of RTrap (The x-axis denotes the ransomware
family, sorted by family name where x=1 indicates AvosLocker, whereas
x=10 denotes the Suncrypts family).

VirusShare [40] between 2021 and Q1 of 2022. The ran-
somware families investigated for the RTrap sustainability
studies are AvosLocker, BlackByte, BlackCat, Clop, Conti,
Cuba, HiveLeaks, Lockbit, Snatch, and Suncrypts. The same
file setup as in Section V-A was used to assess the sustain-
ability of RTrap. Our preliminary result in Figure 7 shows
that RTrap is sustainable at reasonable costs, with an average
of 20 files lost per 10311 user files (i.e., on average, two
more files get encrypted compared to the upshot reported
in Figure 6). This result also means the deception rate of
RTrap decays only by 0.02% (i.e., 99.82% - 99.80%). The
main takeaway of this experiment is that RTrap generates a
decoy file adaptively without considering the static or dynamic
property of the ransomware. Subsequently, it is agnostic to
ransomware variants and sustainable over time.

E. Decoy-Watcher Analysis

As discussed in Section IV-C, upon detecting malicious
activity, the ransomware incident containment strategies intro-
duced in the proposed decoy-watcher perform two main
activities: (1) disconnecting the host from the network by
disabling the internet connectivity and (2) killing the malicious
process to minimize the risk of the ransomware continuing the
encryption process. This setting can likewise be configured
to promptly turn off the victim device based on the level of
risk acceptable to the organization (or organizational policy).
The inability to rapidly disconnect the victim from the system
may add to the incident by permitting the ransomware to
continue encrypting the user files on the local system and
network-attached devices so that the recovery endeavor returns
the system to the original state is increased. Thus, it is
important to contain the ransomware quickly.

In RTrap, the decoy-watcher component will promptly exe-
cute the containment decision to disconnect the victim from
the network and stop malicious process execution. However,
as discussed in Section III, ransomware can employ multi-
threading, process splitting, or offloading process strategies to
execute its malicious task. Thus, halting the malicious process
or stopping the ransomware execution takes time. In order

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

GANFURE et al.: RTrap: TRAPPING AND CONTAINING RANSOMWARE WITH MACHINE LEARNING 1445

Fig. 8. The x-axis denotes the ransomware family, sorted by family name
where x=1 indicates Babuk, whereas x=20 denotes the Xorist family.

to access the effectiveness of the decoy-watcher in terms of
containment of the attack, we introduce a new metric called
“stopping distance” (SD), which is the time it takes for
the decoy-watcher to stop the execution of the ransomware
attack after receiving the first notification from the file system.
Mathematically SD is defined as follows:

SD = T E _end − T E
noti f iation (9)

In other words, Equation 9 can be read as the time difference
between the first time the decoy file is accessed and the
last moment the encryption completely stops. The experiment
result shown in Figure 8 was calculated from the timestamp
information stored in a log file. In Figure 8, the x-axis indicates
the ransomware family, the left-side y-axis denotes the average
number of files lost after detection, and the right-side y-axis
signifies the stopping distance in seconds. The outcome reveals
that the average time to stop the ransomware process execution
after receiving the first notification is 5.35 s on average, and
this value increases to 11 s for ransomware family (e.g., Ryuk)
that utilizes more sophisticated techniques. Meanwhile, the
average number of files lost after the first deception of the
ransomware to final termination is 41. Hence, considering
both the average number of lost files to deceive the attack
(i.e., 18) and to contain/stop the attack (i.e., 41), RTrap
can guarantee a 99.42% (i.e., 10252/10311) protection rate
against the ransomware variants utilized in this study. Note
that 10311 is the total number of legitimate user files, and
10252 is the number of user files not altered by ransomware
after the attack (i.e., 10311− 41− 18 = 10252).

Overall, the disparity in the value of SD attributes to
the variation in the number of a malicious process spawned
by the ransomware family or variant. For the ransomware
families that employ multithreading or uses multiple processes
to perform the encryption, the value of SD is high, and thus
more files will be encrypted; when the ransomware employs a
single process, the proposed decoy-watcher takes less time to
stop its execution. Note that the value of SD can be reduced
to less than 2 seconds if the mitigation task was programmed
to turn off the victim device.

F. Analysis of RTrap False Positive Rate

This experiment investigates the false-positive rate (FPR)
(refer to 10) of RTrap by counting the number of times legiti-
mate users or programs mistakenly access the deployed deco-
files. The false-positive analysis outlined in [51] is adopted
for the experiment. We develop a simple file watcher that
logs every access to the decoy file and records it in a hidden
location. Whenever the decoy file gets accessed, it will add a
new line with a path to the accessed decoy file and a timestamp
to the log file.

F P R =
F P

F P + T N
(10)

FP in Equation 10 indicates the number of False positives
(i.e., the number of decoy files accessed by participants), and
TN indicates True Negatives (i.e., the total number of non-
decoy files). First, we randomly select ten administrative staff
of the university. Participants are informed and asked to run
the RTrap decoy-file generators on their machines. Before
generating the decoy files, participants are asked to provide
an easily recognizable tag (i.e., it can be a prefix or suffix)
for naming a decoy file while also making it alluring to the
attacker. We believe configuring the decoy-file name in such
a way would make the file easily recognizable as a decoy file
by the participant but could make it difficult for the attacker
to differentiate it.

Intuitively, decoy files planted on a participant’s computer
for ransomware detection are not supposed to be accessed by a
legitimate user. Because decoy files are placed there to attract
adversaries to open and modify them, any accidental access
to decoy files by the participants or legitimate software is a
false positive.

Following the decoy-file generation, the participants were
asked to install the file watcher on their system to record user
activity. Note that we also informed the participants that they
were being monitored. Then, the log file was used to measure
the number of times the decoy files were accessed within
four weeks of the experiment. On day one of the experiment,
the file watcher was configured to generate an alert to allow
participants to learn and memorize the decoy files. From the
second day on, any access to the decoy files will be recorded
secretly without generating an alert.

At the end of the experiment, the log file from the partici-
pant’s computer is collected, and our findings are summarized
in Table I. While more longitudinal research is expected to
generalize the correlation between the quantity of planted
decoy-files, and their false-positive rate analysis, our pre-
liminary outcomes indicate that RTrap decoy-file generation
strategy system has an average false-positive rate of 0.2%.
As shown in Table I, the highest access to the decoy-files was
assessed observed in PC10 (i.e., 10th participant) which is also
the computer with the highest number of legitimate user files
and the highest number of decoy-files.

In addition to providing adequate training for the user, it is
feasible to lower the false-positive rate by hiding the visibility
of decoy files. We also did not encounter any ransomware that
ignores hidden files; nevertheless, targeted malware may do so
to avoid detection.

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

1446 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE I
FALSE POSITIVE ANALYSIS OF RTRAP

Overall, finding a false-positive rate of less than 1% is
encouraging, but it might be further reduced with better
decoy-file placement strategies. For instance, an interested
researcher might devise a decoy file placement system that
considers both program behavior and user behaviors to lower
false-positive rates.

G. Performance Analysis

As the final metric to evaluate the practicability of the pro-
posed method, we assess the performance of RTrap, in terms
of “runtime overhead.” First, we assess the decoy file selection
module’s runtime memory requirement and time complexity.
Following that, we conduct the runtime analysis for the decoy-
watcher module.

The memory utilization for the execution of the proposed
decoy file generation algorithm is primarily to store the value
of three matrices: Sim(i, j), Resp(i, j), and Avail(i, j) (refer
to Section IV-B.3). Suppose that each element of the matrix
requires 4 bytes of memory, and the total number of the data
points in a directory is N ; the total memory required to store
the three matrices is at least 3× N 2

× 4 bytes. In RTrap, the
decoy file selection process involves hierarchical execution;
that is, decoy files are selected for the root directory first and
moves to the subdirectories one by one. The utilization of
this strategy enables the efficient execution of the computation
without loading the entire data points from the storage devices
to the main memory. Hence, the runtime memory requirement
of the proposed decoy file generation strategy is minimal.
With regards to time complexity, the entire update process
of Resp(i, j) and Avail(i, j) requires O(T N 2) time, where
T represents the number of iteration required to converge.
Note that the decoy file generation process is executed just a
single time for the whole system, and the procedure repeats for
specific directories based on the scheduling policy to make the
update to the decoy files. Thus, the online/runtime overhead
is minimal.

As discussed in Section IV-C, our decoy-watcher is regis-
tered with the file system to get informed promptly whenever a
decoy file is accessed. In the proposed decoy-watcher, monitor-
ing directories for changes to decoy files are implemented with
a “file name filter”, which permits the event to raise only when
the name of the file changed matches the filter condition (i.e.,
only decoy files). This has the advantage of reducing the buffer
usage of the real-time monitoring of decoy files. Importantly,
as the “file monitoring task” is the default task performed by

Fig. 9. Run-time analysis of decoy-watcher.

the file system, there is no significant computational overhead
introduced by the proposed RTrap. The only exception is when
a specific event related to the decoy file is received (i.e., during
the ransomware attack). At that time, a single event can take
up 16 bytes in the buffer in addition to the bytes required
to store the name of the decoy file currently accessed. In the
worst case, if the event was raised for a decoy file with a file
name with 255 Unicode characters (i.e., maximum allowed
number of characters in NTFS), it takes up to 526 bytes of
memory (i.e., two bytes per character), which is negligible.

To show the real-time memory usage of the proposed decoy-
watcher, we conduct the memory trace experiment to measure
the amount of memory currently in use for a decoy-watcher
process and child-process. The runtime memory usage of the
proposed decoy-watcher is shown in Figure 9. The first part in
the initial 30 seconds of Figure 9 shows that the decoy-watcher
is running, but no suspicious activity is detected. On the other
hand, the peak memory usage was recorded (i.e., 20 M B)
at the time when the decoy files are accessed (i.e., access to
decoy files), and the decoy-watcher was taking a mitigation
task. Overall, the amount of memory that is being consumed
by the decoy-watcher module is less than 20 M B, which
is insignificant compared with antiviral solutions that use
hundreds of megabytes. During the dynamic analysis, antiviral
solutions perform memory-intensive tasks (e.g., intercepting
and correlating the API call sequence with malware signatures)
and track each process activity for digital evidence (e.g.,
dropped executable with millions of malware signatures and
observing changes to system registry activity [52]); thus,
antiviral solutions demand a significant amount of RAM).
Overall, the run-time resource usage of the proposed RTrap
has negligible runtime overhead.

VI. CONCLUSION

Although prevention is ideal for any attack, not all ran-
somware attacks can be prevented due to criminals’ signature
obfuscation and zero-day exploitation strategies. In recogniz-
ing that attackers will succeed one day in bypassing the pre-
vention strategy utilized by an enterprise, this work proposes
a systematic strategy, called “RTrap,” to create deceptive files
via machine learning to lure the attacker (or ransomware) into
accessing it. Upon detecting any potential access to deceptive

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

GANFURE et al.: RTrap: TRAPPING AND CONTAINING RANSOMWARE WITH MACHINE LEARNING 1447

files, the proposed RTrap model autonomously contains the
incidence by disconnecting the victim from the network and
killing all the malicious processes. The realistic experiment
using emerging ransomware families shows that RTrap can
detect the ransomware with an average of 18 lost files per
10311 legitimate user files. The experiment result also shows
that the proposed solution provides a post-breach defense
agnostic to the attack’s ransomware family or variant. Besides,
on average, the proposed lightweight decoy-watcher can trap,
contain, and control the execution of the ransomware in less
than 5.35 s. Hence, we consider the proposed approach prac-
tical and efficient for post-breach detection and containment.
Moreover, this work also lays out the main technical concerns
of emerging ransomware families and shortfalls of existing
works, which are vital for other researchers and technologists
working on the related issues. Introducing an automated strat-
egy to detect ransomware before it starts the encryption and
designing mechanisms to auto-detect and remove ransomware
keys from the registry is the part we left for future work.

REFERENCES

[1] B. Zhang, W. Xiao, X. Xiao, A. K. Sangaiah, W. Zhang, and J. Zhang,
“Ransomware classification using patch-based CNN and self-attention
network on embedded N-grams of opcodes,” Future Gener. Comput.
Syst., vol. 110, pp. 708–720, Sep. 2020.

[2] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Proc. 23rd Annu. Comput. Secur. Appl. Conf.
(ACSAC), Dec. 2007, pp. 421–430.

[3] R. Tian, R. Islam, L. Batten, and S. Versteeg, “Differentiating malware
from cleanware using behavioural analysis,” in Proc. 5th Int. Conf.
Malicious Unwanted Softw., Oct. 2010, pp. 23–30.

[4] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
“UNVEIL: A large-scale, automated approach to detecting ransomware,”
in Proc. 25th USENIX Secur. Symp. (USENIX Security), 2016,
pp. 757–772.

[5] F. De Gaspari, D. Hitaj, G. Pagnotta, L. De Carli, and L. V. Mancini,
“The naked sun: Malicious cooperation between benign-looking pro-
cesses,” 2019, arXiv:1911.02423.

[6] R. Samani and C. Beek, “McAfee labs threats report,” McAfee, Santa
Clara, CA, USA, Tech. Rep., Aug. 2019.

[7] B. Whitham, “Automating the generation of enticing text content for
high-interaction honeyfiles,” in Proc. 50th Hawaii Int. Conf. Syst. Sci.,
2017, pp. 1–10.

[8] Emsisoft Malware Lab. The State of Ransomware in the US:
Report and Statistics 2019. Accessed: Jan. 20, 2020. [Online].
Available: https://blog.emsisoft.com/en/34822/the-state-of-ransomware-
in-the-us-report-and-statistics-2019/

[9] Sophos-Lab. (Jan. 2018). The State of Endpoint Security Today.
[Online]. Available: https://www.sophos.com/en-us/medialibrary/Gated-
Assets/white-papers/endpoint-survey-report.pdf

[10] S. Poudyal, K. P. Subedi, and D. Dasgupta, “A framework for analyzing
ransomware using machine learning,” in Proc. IEEE Symp. Ser. Comput.
Intell. (SSCI), Nov. 2018, pp. 1692–1699.

[11] R. M. A. Molina, S. Torabi, K. Sarieddine, E. Bou-Harb, N. Bouguila,
and C. Assi, “On ransomware family attribution using pre-attack para-
noia activities,” IEEE Trans. Netw. Service Manage., vol. 19, no. 1,
pp. 19–36, Mar. 2022.

[12] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock
(and drop it): Stopping ransomware attacks on user data,” in Proc.
IEEE 36th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2016,
pp. 303–312.

[13] K. Cabaj and W. Mazurczyk, “Using software-defined networking for
ransomware mitigation: The case of cryptowall,” IEEE Netw., vol. 30,
no. 6, pp. 14–20, Nov./Dec. 2016.

[14] O. M. Alhawi, J. Baldwin, and A. Dehghantanha, “Leveraging machine
learning techniques for windows ransomware network traffic detection,”
in Cyber Threat Intelligence. New York, NY, USA: Springer, 2018,
pp. 93–106.

[15] A. O. Almashhadani, M. Kaiiali, S. Sezer, and P. O’Kane, “A multi-
classifier network-based crypto ransomware detection system: A case
study of Locky ransomware,” IEEE Access, vol. 7, pp. 47053–47067,
2019.

[16] S. Sharmeen, Y. A. Ahmed, S. Huda, B. S. Kocer, and M. M. Hassan,
“Avoiding future digital extortion through robust protection against
ransomware threats using deep learning based adaptive approaches,”
IEEE Access, vol. 8, pp. 24522–24534, 2020.

[17] M. Alam, S. Bhattacharya, S. Dutta, S. Sinha, D. Mukhopadhyay, and
A. Chattopadhyay, “RATAFIA: Ransomware analysis using time and
frequency informed autoencoders,” in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust (HOST), May 2019, pp. 218–227.

[18] S. Aurangzeb, R. N. B. Rais, M. Aleem, M. A. Islam, and M. A. Iqbal,
“On the classification of microsoft-windows ransomware using hardware
profile,” PeerJ Comput. Sci., vol. 7, p. e361, Feb. 2021.

[19] G. O. Ganfure, C.-F. Wu, Y.-H. Chang, and W.-K. Shih, “DeepGuard:
Deep generative user-behavior analytics for ransomware detection,” in
Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI), Nov. 2020, pp. 1–6.

[20] S. Baek, Y. Jung, D. Mohaisen, S. Lee, and D. Nyang, “SSD-assisted
ransomware detection and data recovery techniques,” IEEE Trans. Com-
put., vol. 70, no. 10, pp. 1762–1776, Oct. 2020.

[21] C.-M. Hsu, C.-C. Yang, H.-H. Cheng, P. E. Setiasabda, and J.-S. Leu,
“Enhancing file entropy analysis to improve machine learning detection
rate of ransomware,” IEEE Access, vol. 9, pp. 138345–138351, 2021.

[22] J. Lee, J. Lee, and J. Hong, “How to make efficient decoy files for
ransomware detection?” in Proc. Int. Conf. Res. Adapt. Convergent Syst.,
Sep. 2017, pp. 208–212.

[23] J. A. Gómez-Hernández, L. Álvarez-González, and P. García-Teodoro,
“R-locker: Thwarting ransomware action through a honeyfile-based
approach,” Comput. Secur., vol. 73, pp. 389–398, Mar. 2018.

[24] Watchpoint Data. (2018). Cryptostopper. [Online]. Available:
https://www.watchpointdata.com/cryptostopper

[25] S. Mehnaz, A. Mudgerikar, and E. Bertino, “RWGuard: A real-time
detection system against cryptographic ransomware,” in Proc. Int. Symp.
Res. Attacks, Intrusions, Defenses. New York, NY, USA: Springer, 2018,
pp. 114–136.

[26] G. Hull, H. John, and B. Arief, “Ransomware deployment methods and
analysis: Views from a predictive model and human responses,” Crime
Sci., vol. 8, no. 1, p. 2, Dec. 2019.

[27] Sophos Lab. (2020). Sophos Lab Security Threat Report. [Online]. Avail-
able: https://www.sophos.com/en-us/labs/security-threat-report.aspx

[28] K. Sudhakar and S. Kumar, “An emerging threat fileless malware: A
survey and research challenges,” Cybersecurity, vol. 3, no. 1, pp. 1–12,
Dec. 2020.

[29] A Sophoslabs White Paper 2019. Accessed: Dec. 21, 2019. [Online].
Available: https://www.sophos.com/en-us/medialibrary/PDFs/technical-
papers/sophoslabs-ransomware-behavior-report.pdf

[30] (2019). Black Ruby: Combining Ransomware and Coin Miner Malware.
[Online]. Available: https://www.acronis.com/en-us/blog/posts/black-
ruby-combining-ransomware-and-coin-miner-malware

[31] AV-TEST. (Mar. 2020). Malware Statistics and Trends Report: AV-Test.
[Online]. Available: https://www.av-test.org/en/statistics

[32] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007.

[33] E. Bisong, “Introduction to scikit-learn,” in Building Machine Learning
and Deep Learning Models on Google Cloud Platform. CA, USA:
Springer, 2019, pp. 215–229.

[34] A. van Wyk, “Encoding cyclical features for deep learning,” EPI-USE
Lab, Pretoria, South Africa, Tech. Rep., 2018.

[35] T. Ronan, Z. Qi, and K. M. Naegle, “Avoiding common pitfalls when
clustering biological data,” Sci. Signaling, vol. 9, no. 432, p. re6,
Jun. 2016.

[36] Y. Xu, D. Zhang, and J.-Y. Yang, “A feature extraction method
for use with bimodal biometrics,” Pattern Recognit., vol. 43, no. 3,
pp. 1106–1115, Mar. 2010.

[37] L. Zhang, R. Lukac, X. Wu, and D. Zhang, “PCA-based spatially
adaptive denoising of CFA images for single-sensor digital cameras,”
IEEE Trans. Image Process., vol. 18, no. 4, pp. 797–812, Apr. 2009.

[38] H. Ashtiani, S. Kushagra, and S. Ben-David, “Clustering with same-
cluster queries,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3216–3224.

[39] Kaspersky-Lab. (May 2020). Ransomware 2018-2020. [Online].
Available: https://media.kasperskycontenthub.com/wp-content/uploads/
sites/100/2020/05/12075747/KSN-article_Ransomware-in-2018-2020-
1.pdf

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

1448 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[40] J.-M. Roberts. (2011). Virus Share. [Online]. Available: https://
virusshare.com

[41] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing science
to digital forensics with standardized forensic corpora,” Digit. Invest.,
vol. 6, pp. S2–S11, Sep. 2009.

[42] N. Coldwell. Comparison of Audio Compression. Accessed: Mar. 5,
2019. [Online]. Available: http://nigelcoldwell.co.uk/audio/index.htm

[43] Z. A. Genç, G. Lenzini, and D. Sgandurra, “On deception-based protec-
tion against cryptographic ransomware,” in Proc. Int. Conf. Detection
Intrusions Malware, Vulnerability Assessment. New York, NY, USA:
Springer, 2019, pp. 219–239.

[44] Microsoft Research Open Data. Accessed: Mar. 21, 2022. [Online].
Available: https://msropendata.com/

[45] H. Cai and J. Jenkins, “Towards sustainable Android malware detection,”
in Proc. 40th Int. Conf. Softw. Eng., Companion Proc., May 2018,
pp. 350–351.

[46] X. Fu and H. Cai, “On the deterioration of learning-based
malware detectors for android,” in Proc. IEEE/ACM 41st Int.
Conf. Softw. Eng., Companion (ICSE-Companion), May 2019,
pp. 272–273.

[47] H. Cai, X. Fu, and A. Hamou-Lhadj, “A study of run-time behavioral
evolution of benign versus malicious apps in Android,” Inf. Softw.
Technol., vol. 122, Jun. 2020, Art. no. 106291.

[48] H. Cai, “Embracing mobile app evolution via continuous ecosystem
mining and characterization,” in Proc. IEEE/ACM 7th Int. Conf. Mobile
Softw. Eng. Syst., Jul. 2020, pp. 31–35.

[49] W. Li, X. Fu, and H. Cai, “AndroCT: Ten years of app call traces in
android,” in Proc. IEEE/ACM 18th Int. Conf. Mining Softw. Repositories
(MSR), May 2021, pp. 570–574.

[50] H. Cai, “Assessing and improving malware detection sustainability
through app evolution studies,” ACM Trans. Softw. Eng. Methodol.,
vol. 29, no. 2, pp. 1–28, Apr. 2020.

[51] M. B. Salem and S. J. Stolfo, “Decoy document deployment for effective
masquerade attack detection,” in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment. Heidelberg, Germany: Springer,
2011, pp. 35–54.

[52] C. H. Malin, E. Casey, and J. M. Aquilina, Malware Forensics
Field Guide for Windows Systems: Digital Forensics Field Guides.
Amsterdam, The Netherlands: Elsevier, 2012.

Gaddisa Olani Ganfure (Member, IEEE) received
the bachelor’s degree in computer science and IT
from Wollega University, Ethiopia, in 2010, the
master’s degree in computer science from Addis
Ababa University in 2013, and the Ph.D. degree from
the Social Network Analysis and Human-Centered
Computing Department, National Tsing Hua Univer-
sity, and Academia Sinica, Taiwan, in 2020. From
September 2010 to July 2017, he was a Lecturer with
the Department of Computer Science, Dire Dawa
University, Dire Dawa, Ethiopia. He is currently

an Assistant Professor of computer science with the School of Computing,
Department of Computer Science, Dire Dawa University. He was awarded a
scholarship by Taiwan International Graduate Program (TIGP) to pursue his
Ph.D. degree at NTHU. His research interests include big data analysis, cyber-
security, AI-based intrusion detection systems, natural language processing,
and user behavior modeling for cyber deceptions.

Chun-Feng Wu (Member, IEEE) received the M.S.
degree from the Department of Computer Science,
National Tsing Hua University, in 2016, and the
Ph.D. degree from the Department of Computer
Science and Information Engineering, National Tai-
wan University, Taipei, Taiwan, in 2021. Currently,
he is an Assistant Professor with the Department of
Computer Science, National Yang Ming Chiao Tung
University, Hsinchu, Taiwan. Previously, he was a
Post-Doctoral Scholar at the Department of Com-
puter Science, Harvard University, Cambridge, MA,

USA, from 2021 to 2022. He worked in research and development alternative
service at the Institute of Information Science, Academia Sinica, Taipei,
from 2017 to 2021. His primary research interests include memory/storage
systems, embedded systems, operating systems, and the next-generation
memory/storage architecture designs.

Yuan-Hao Chang (Fellow, IEEE) received the Ph.D.
degree in computer science from the Department
of Computer Science and Information Engineer-
ing, National Taiwan University, Taipei, Taiwan.
He is currently a Research Fellow with the Institute
of Information Science, Academia Sinica, Taipei,
where he worked as an Associate Research Fellow
from March 2015 to June 2018 and an Assistant
Research Fellow from August 2011 to March 2015.
His research interests include memory/storage sys-
tems, operating systems, embedded systems, and

real-time systems. He is a Senior Member of ACM.

Wei-Kuan Shih (Member, IEEE) received the B.S.
and M.S. degrees in computer science from the
National Taiwan University and the Ph.D. degree
in computer science from the University of Illinois
at Urbana–Champaign. From 1986 to 1988, he was
with the Institute of Information Science, Academia
Sinica, Taiwan. He is currently a Professor with the
Department of Computer Science, National Tsing
Hua University, Taiwan. He has published more than
130 papers in professional journals and conferences.
His research interests include real-time systems,

wireless sensor networks, distributed file systems, embedded file systems, and
energy issues pertaining to cloud computing.

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on May 13,2025 at 18:56:12 UTC from IEEE Xplore. Restrictions apply.

